mmfewshot/tests/test_detection_models/test_detection_model_frozen.py

149 lines
5.3 KiB
Python

# Copyright (c) OpenMMLab. All rights reserved.
from mmcv import ConfigDict
from mmcv.utils import get_logger
from mmfewshot.detection.models.builder import build_detector
def test_attention_rpn_detector_forward():
cfg = ConfigDict(
type='TFA',
backbone=dict(
type='ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=4,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='caffe'),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=5,
init_cfg=[
dict(
type='Caffe2Xavier',
override=dict(type='Caffe2Xavier', name='lateral_convs')),
dict(
type='Caffe2Xavier',
override=dict(type='Caffe2Xavier', name='fpn_convs'))
]),
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(
type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='CosineSimBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=20,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0),
init_cfg=[
dict(
type='Caffe2Xavier',
override=dict(type='Caffe2Xavier', name='shared_fcs')),
dict(
type='Normal',
override=dict(type='Normal', name='fc_cls', std=0.01)),
dict(
type='Normal',
override=dict(type='Normal', name='fc_reg', std=0.001))
],
num_shared_fcs=2,
scale=20)),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)),
frozen_parameters=['backbone', 'neck'])
model = build_detector(cfg, logger=get_logger('test'))
for parameter in model.backbone.parameters():
assert parameter.requires_grad is False
for parameter in model.neck.parameters():
assert parameter.requires_grad is False
for parameter in model.rpn_head.parameters():
assert parameter.requires_grad is True
for parameter in model.roi_head.parameters():
assert parameter.requires_grad is True