Linyiqi a55d76ff8a
add fewshot classification v2 (#27)
* bug fix

* fix comments

* fix doc str

* seprate the cls and det

* update script

* fix commnets

* fix commnets

* fix commnets

test 0 loss

fix commnets

* update tools

* rename detectors

* rename detectors

* rename detectors

* rename detectors

* del frcnn config

* update doc str

* update config

* fix comments

* fix comments

* update config

* update config

* update config

* update config

* fix comments

* fix comments

* fix comments

* fix comments

* add mpsr

* update config

* update config

* test bug voc data

* mv vis to misc

* classification framwork

* add fewshot classification methods

* set before method static

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* add blank line for bar

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* Revert "update config"

This reverts commit a71c6aae288f282887c8d75875b82333ada20658.

* Revert "update config"

This reverts commit d21d5bcccf00195968ccd7ea1952672a54e13ac1.

* Revert "update config"

This reverts commit 1786c07902ec885f0f456cca39cd47872c5eaf64.

* Revert "update config"

This reverts commit 27efc60b04aa96c45c5ee02307014d51518b6805.

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* add resnet12

* update config

* update config

* update config

* update config

* update config

* update config and backbone

* update config and backbone

* update config and backbone

* update config and backbone

* update config and backbone

* update config and backbone

* fix dataset sampling

* fix dataset sampling

* add baseline config

* update  baseline config

* update  baseline++ config

* update  baseline++ config

* update  baseline++ config

* update  baseline config

* fix pipeline

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update test backbone

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* fix maml bug

* fix maml bug

* update config

* fix maml bug

* update config

* update config

* update config

* fix maml bug

* update config

* update config

* update config

* update config

* update config

* update config

* add tiered imagenet

* update config

* update config

* update config

* update config

* add dataloader

* add dataloader

* add dataloader

* add dataloader

* add dataloader

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* add doc

* add doc

* fix tiered imagenet

* fix tiered imagenet

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* fix comments

* fix comments

* update config

* update config

* update config

* update config

* update config

* update config

* fix eval prior

* update relation net

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update config

* update doc str

* update doc str

* update doc str

* update config

* update config

* update config

* update config

* update doc str

* add few shot classification

* update meta baseline config

* add few shot classification

* update script

* update script

* update script

* update script

* update script

* update config

* update config

* update config

* update config

* update margin to 0

* update config

* fix comments

* fix comments

* update config

* update config

* update config

* fix comments

* update config

* fix meta baseline

* fix meta baseline

* update config

* fix meta baseline

* update config

* update config

* fix comments

* fix comments

* update config

* add config

Co-authored-by: zhangshilong <2392587229zsl@gmail.com>
2021-09-01 19:46:51 +08:00

169 lines
6.1 KiB
Python

import argparse
import os
import os.path as osp
import time
import mmcv
import torch
from mmcls.models import build_classifier
from mmcls.utils import get_root_logger
from mmcv import DictAction
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
wrap_fp16_model)
from mmfewshot.classification.apis import (multi_gpu_meta_test,
set_random_seed,
single_gpu_meta_test)
from mmfewshot.classification.datasets import (build_dataset,
build_meta_test_dataloader)
def parse_args():
parser = argparse.ArgumentParser(description='mmcls test model')
parser.add_argument('config', help='test config file path')
parser.add_argument('checkpoint', help='checkpoint file')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--metrics',
type=str,
nargs='+',
help='evaluation metrics, which depends on the dataset, e.g., '
'"accuracy", "precision", "recall", "f1_score", "support" for single '
'label dataset, and "mAP", "CP", "CR", "CF1", "OP", "OR", "OF1" for '
'multi-label dataset')
parser.add_argument(
'--show-task-results',
action='store_true',
help='whether to show results of each task')
parser.add_argument('--tmpdir', help='tmp dir for writing some results')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file.')
parser.add_argument(
'--metric-options',
nargs='+',
action=DictAction,
default={},
help='custom options for evaluation, the key-value pair in xxx=yyy '
'format will be parsed as a dict metric_options for dataset.evaluate()'
' function.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--deterministic',
action='store_true',
help='whether to set deterministic options for CUDNN backend.')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument(
'--device',
choices=['cpu', 'cuda'],
default='cuda',
help='device used for testing')
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def main():
args = parse_args()
cfg = mmcv.Config.fromfile(args.config)
if args.options is not None:
cfg.merge_from_dict(args.options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
rank, _ = get_dist_info()
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}_test.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# set random seeds
if args.seed is not None:
logger.info(f'Set random seed to {args.seed}, '
f'deterministic: {args.deterministic}')
set_random_seed(args.seed, deterministic=args.deterministic)
dataset = build_dataset(cfg.data.test)
meta_test_cfg = cfg.data.test.meta_test_cfg
(support_data_loader, query_data_loader,
all_data_loader) = build_meta_test_dataloader(dataset, meta_test_cfg)
# build the model and load checkpoint
model = build_classifier(cfg.model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
if rank == 0:
logger.info(f'load from checkpoint: {args.checkpoint} ')
load_checkpoint(model, args.checkpoint, map_location='cpu')
if not distributed:
if args.device == 'cpu':
model = model.cpu()
else:
model = MMDataParallel(model, device_ids=[0])
meta_eval_results = single_gpu_meta_test(
model,
meta_test_cfg.num_episodes,
support_data_loader,
query_data_loader,
all_data_loader,
meta_test_cfg=meta_test_cfg,
logger=logger,
eval_kwargs=dict(metric=cfg.evaluation.metric),
show_task_results=args.show_task_results)
else:
model = MMDistributedDataParallel(
model.cuda(),
device_ids=[torch.cuda.current_device()],
broadcast_buffers=False)
meta_eval_results = multi_gpu_meta_test(
model,
meta_test_cfg.num_episodes,
support_data_loader,
query_data_loader,
all_data_loader,
meta_test_cfg=meta_test_cfg,
logger=logger,
eval_kwargs=dict(metric=cfg.evaluation.metric),
show_task_results=args.show_task_results)
if rank == 0:
logger.info(f'Checkpoint: {args.checkpoint}')
for k, v in meta_eval_results.items():
logger.info(f'{k} : {v:.2f}')
if __name__ == '__main__':
main()