2021-04-03 01:03:52 +08:00
|
|
|
# Mask R-CNN
|
|
|
|
|
|
|
|
## Introduction
|
|
|
|
|
|
|
|
[ALGORITHM]
|
|
|
|
|
|
|
|
```bibtex
|
2021-04-10 18:04:36 +08:00
|
|
|
@INPROCEEDINGS{8237584,
|
|
|
|
author={K. {He} and G. {Gkioxari} and P. {Dollár} and R. {Girshick}},
|
|
|
|
booktitle={2017 IEEE International Conference on Computer Vision (ICCV)},
|
|
|
|
title={Mask R-CNN},
|
|
|
|
year={2017},
|
|
|
|
pages={2980-2988},
|
|
|
|
doi={10.1109/ICCV.2017.322}}
|
|
|
|
```
|
|
|
|
|
|
|
|
In tuning parameters, we refer to the baseline method in the following article:
|
|
|
|
|
|
|
|
```bibtex
|
2021-04-03 01:03:52 +08:00
|
|
|
@article{pmtd,
|
|
|
|
author={Jingchao Liu and Xuebo Liu and Jie Sheng and Ding Liang and Xin Li and Qingjie Liu},
|
|
|
|
title={Pyramid Mask Text Detector},
|
|
|
|
journal={CoRR},
|
|
|
|
volume={abs/1903.11800},
|
|
|
|
year={2019}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
## Results and models
|
|
|
|
|
|
|
|
### CTW1500
|
|
|
|
|
|
|
|
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
|
|
|
| :---------------------------------------------------------------------: | :--------------: | :-----------: | :----------: | :-----: | :-------: | :----: | :-------: | :---: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
|
|
| [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py) | ImageNet | CTW1500 Train | CTW1500 Test | 160 | 1600 | 0.753 | 0.712 | 0.732 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.log.json) |
|
|
|
|
|
|
|
|
### ICDAR2015
|
|
|
|
|
|
|
|
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
|
|
|
| :-----------------------------------------------------------------------: | :--------------: | :-------------: | :------------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
|
|
| [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py) | ImageNet | ICDAR2015 Train | ICDAR2015 Test | 160 | 1920 | 0.783 | 0.872 | 0.825 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.log.json) |
|
|
|
|
|
|
|
|
### ICDAR2017
|
|
|
|
|
|
|
|
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
|
|
|
| :-----------------------------------------------------------------------: | :--------------: | :-------------: | :-----------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
|
|
|
| [MaskRCNN](/configs/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py) | ImageNet | ICDAR2017 Train | ICDAR2017 Val | 160 | 1600 | 0.754 | 0.827 | 0.789 | [model](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.log.json) |
|