mmocr/tests/test_apis/test_model_inference.py

121 lines
4.0 KiB
Python
Raw Normal View History

2021-04-06 16:04:14 +08:00
import os
import pytest
from mmcv.image import imread
2021-04-06 16:04:14 +08:00
from mmdet.apis import init_detector
from mmocr.apis.inference import model_inference
from mmocr.datasets import build_dataset # noqa: F401
from mmocr.models import build_detector # noqa: F401
def build_model(config_file):
device = 'cpu'
model = init_detector(config_file, checkpoint=None, device=device)
if model.cfg.data.test['type'] == 'ConcatDataset':
model.cfg.data.test.pipeline = model.cfg.data.test['datasets'][
0].pipeline
return model
def disable_aug_test(model):
model.cfg.data.test.pipeline = [
model.cfg.data.test.pipeline[0],
*model.cfg.data.test.pipeline[1].transforms
]
return model
2021-04-06 16:04:14 +08:00
@pytest.mark.parametrize('cfg_file', [
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py',
'../configs/textrecog/crnn/crnn_academic_dataset.py',
'../configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py',
'../configs/textrecog/robust_scanner/robustscanner_r31_academic.py',
'../configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py',
'../configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py'
])
def test_model_inference(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
2021-04-06 16:04:14 +08:00
with pytest.raises(AssertionError):
model_inference(model, 1)
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg')
model_inference(model, sample_img_path)
2021-04-06 16:04:14 +08:00
# numpy inference
img = imread(sample_img_path)
model_inference(model, img)
@pytest.mark.parametrize('cfg_file', [
'../configs/textrecog/crnn/crnn_academic_dataset.py',
'../configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py'
])
def test_model_batch_inference(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg')
results = model_inference(model, [sample_img_path, sample_img_path])
assert len(results) == 2
# numpy inference
img = imread(sample_img_path)
results = model_inference(model, [img, img])
assert len(results) == 2
@pytest.mark.parametrize('cfg_file', [
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py',
'../configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py',
'../configs/textrecog/robust_scanner/robustscanner_r31_academic.py',
])
def test_model_batch_inference_raises_assertion_error_if_unsupported(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
with pytest.raises(
AssertionError,
match='aug test does not support inference with batch size'):
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg')
model_inference(model, [sample_img_path, sample_img_path])
with pytest.raises(
AssertionError,
match='aug test does not support inference with batch size'):
img = imread(sample_img_path)
model_inference(model, [img, img])
@pytest.mark.parametrize('cfg_file', [
'../configs/textrecog/sar/sar_r31_parallel_decoder_academic.py',
'../configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py',
'../configs/textrecog/robust_scanner/robustscanner_r31_academic.py',
])
def test_model_batch_inference_recog(cfg_file):
tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
config_file = os.path.join(tmp_dir, cfg_file)
model = build_model(config_file)
model = disable_aug_test(model)
sample_img_path = os.path.join(tmp_dir, '../demo/demo_text_det.jpg')
results = model_inference(model, [sample_img_path, sample_img_path])
assert len(results) == 2
# numpy inference
img = imread(sample_img_path)
results = model_inference(model, [img, img])
assert len(results) == 2