mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
287 lines
8.8 KiB
Python
287 lines
8.8 KiB
Python
|
import argparse
|
||
|
import glob
|
||
|
import os
|
||
|
import os.path as osp
|
||
|
from functools import partial
|
||
|
|
||
|
import mmcv
|
||
|
import numpy as np
|
||
|
import scipy.io as scio
|
||
|
from shapely.geometry import Polygon
|
||
|
|
||
|
from mmocr.datasets.pipelines.crop import crop_img
|
||
|
from mmocr.utils import drop_orientation, is_not_png
|
||
|
from mmocr.utils.fileio import list_to_file
|
||
|
|
||
|
|
||
|
def collect_files(img_dir, gt_dir, split):
|
||
|
"""Collect all images and their corresponding groundtruth files.
|
||
|
|
||
|
Args:
|
||
|
img_dir(str): The image directory
|
||
|
gt_dir(str): The groundtruth directory
|
||
|
split(str): The split of dataset. Namely: training or test
|
||
|
|
||
|
Returns:
|
||
|
files(list): The list of tuples (img_file, groundtruth_file)
|
||
|
"""
|
||
|
assert isinstance(img_dir, str)
|
||
|
assert img_dir
|
||
|
assert isinstance(gt_dir, str)
|
||
|
assert gt_dir
|
||
|
|
||
|
# note that we handle png and jpg only. Pls convert others such as gif to
|
||
|
# jpg or png offline
|
||
|
suffixes = ['.png', '.jpg', '.jpeg']
|
||
|
# suffixes = ['.png']
|
||
|
|
||
|
imgs_list = []
|
||
|
for suffix in suffixes:
|
||
|
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
|
||
|
|
||
|
imgs_list = [
|
||
|
drop_orientation(f) if is_not_png(f) else f for f in imgs_list
|
||
|
]
|
||
|
|
||
|
files = []
|
||
|
if split == 'training':
|
||
|
for img_file in imgs_list:
|
||
|
gt_file = osp.join(
|
||
|
gt_dir,
|
||
|
'poly_gt_' + osp.splitext(osp.basename(img_file))[0] + '.mat')
|
||
|
files.append((img_file, gt_file))
|
||
|
assert len(files), f'No images found in {img_dir}'
|
||
|
print(f'Loaded {len(files)} images from {img_dir}')
|
||
|
elif split == 'test':
|
||
|
for img_file in imgs_list:
|
||
|
gt_file = osp.join(
|
||
|
gt_dir,
|
||
|
'poly_gt_' + osp.splitext(osp.basename(img_file))[0] + '.mat')
|
||
|
files.append((img_file, gt_file))
|
||
|
assert len(files), f'No images found in {img_dir}'
|
||
|
print(f'Loaded {len(files)} images from {img_dir}')
|
||
|
|
||
|
return files
|
||
|
|
||
|
|
||
|
def collect_annotations(files, split, nproc=1):
|
||
|
"""Collect the annotation information.
|
||
|
|
||
|
Args:
|
||
|
files(list): The list of tuples (image_file, groundtruth_file)
|
||
|
split(str): The split of dataset. Namely: training or test
|
||
|
nproc(int): The number of process to collect annotations
|
||
|
|
||
|
Returns:
|
||
|
images(list): The list of image information dicts
|
||
|
"""
|
||
|
assert isinstance(files, list)
|
||
|
assert isinstance(split, str)
|
||
|
assert isinstance(nproc, int)
|
||
|
|
||
|
load_img_info_with_split = partial(load_img_info, split=split)
|
||
|
if nproc > 1:
|
||
|
images = mmcv.track_parallel_progress(
|
||
|
load_img_info_with_split, files, nproc=nproc)
|
||
|
else:
|
||
|
images = mmcv.track_progress(load_img_info_with_split, files)
|
||
|
|
||
|
return images
|
||
|
|
||
|
|
||
|
def get_contours(gt_path, split):
|
||
|
"""Get the contours and words for each ground_truth file.
|
||
|
|
||
|
Args:
|
||
|
gt_path(str): The relative path of the ground_truth mat file
|
||
|
split(str): The split of dataset: training or test
|
||
|
|
||
|
Returns:
|
||
|
contours(list[lists]): A list of lists of contours
|
||
|
for the text instances
|
||
|
words(list[list]): A list of lists of words (string)
|
||
|
for the text instances
|
||
|
"""
|
||
|
assert isinstance(gt_path, str)
|
||
|
assert isinstance(split, str)
|
||
|
|
||
|
contours = []
|
||
|
words = []
|
||
|
data = scio.loadmat(gt_path)
|
||
|
if split == 'training':
|
||
|
data_polygt = data['polygt']
|
||
|
elif split == 'test':
|
||
|
data_polygt = data['polygt']
|
||
|
|
||
|
for lines in data_polygt:
|
||
|
X = np.array(lines[1])
|
||
|
Y = np.array(lines[3])
|
||
|
|
||
|
point_num = len(X[0])
|
||
|
word = lines[4]
|
||
|
if len(word) == 0:
|
||
|
word = '???'
|
||
|
else:
|
||
|
word = word[0]
|
||
|
|
||
|
if word == '#':
|
||
|
word = '###'
|
||
|
continue
|
||
|
|
||
|
words.append(word)
|
||
|
|
||
|
arr = np.concatenate([X, Y]).T
|
||
|
contour = []
|
||
|
for i in range(point_num):
|
||
|
contour.append(arr[i][0])
|
||
|
contour.append(arr[i][1])
|
||
|
contours.append(np.asarray(contour))
|
||
|
|
||
|
return contours, words
|
||
|
|
||
|
|
||
|
def load_mat_info(img_info, gt_file, split):
|
||
|
"""Load the information of one ground truth in .mat format.
|
||
|
|
||
|
Args:
|
||
|
img_info(dict): The dict of only the image information
|
||
|
gt_file(str): The relative path of the ground_truth mat
|
||
|
file for one image
|
||
|
split(str): The split of dataset: training or test
|
||
|
|
||
|
Returns:
|
||
|
img_info(dict): The dict of the img and annotation information
|
||
|
"""
|
||
|
assert isinstance(img_info, dict)
|
||
|
assert isinstance(gt_file, str)
|
||
|
assert isinstance(split, str)
|
||
|
|
||
|
contours, words = get_contours(gt_file, split)
|
||
|
anno_info = []
|
||
|
for contour, word in zip(contours, words):
|
||
|
if contour.shape[0] == 2:
|
||
|
continue
|
||
|
coordinates = np.array(contour).reshape(-1, 2)
|
||
|
polygon = Polygon(coordinates)
|
||
|
|
||
|
# convert to COCO style XYWH format
|
||
|
min_x, min_y, max_x, max_y = polygon.bounds
|
||
|
bbox = [min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y]
|
||
|
anno = dict(word=word, bbox=bbox)
|
||
|
anno_info.append(anno)
|
||
|
|
||
|
img_info.update(anno_info=anno_info)
|
||
|
return img_info
|
||
|
|
||
|
|
||
|
def generate_ann(root_path, split, image_infos):
|
||
|
|
||
|
dst_image_root = osp.join(root_path, 'dst_imgs', split)
|
||
|
if split == 'training':
|
||
|
dst_label_file = osp.join(root_path, 'train_label.txt')
|
||
|
elif split == 'test':
|
||
|
dst_label_file = osp.join(root_path, 'test_label.txt')
|
||
|
os.makedirs(dst_image_root, exist_ok=True)
|
||
|
|
||
|
lines = []
|
||
|
for image_info in image_infos:
|
||
|
index = 1
|
||
|
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
|
||
|
image = mmcv.imread(src_img_path)
|
||
|
src_img_root = osp.splitext(image_info['file_name'])[0].split('/')[1]
|
||
|
|
||
|
for anno in image_info['anno_info']:
|
||
|
word = anno['word']
|
||
|
dst_img = crop_img(image, anno['bbox'])
|
||
|
dst_img_name = f'{src_img_root}_{index}.png'
|
||
|
index += 1
|
||
|
dst_img_path = osp.join(dst_image_root, dst_img_name)
|
||
|
mmcv.imwrite(dst_img, dst_img_path)
|
||
|
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
||
|
f'{word}')
|
||
|
list_to_file(dst_label_file, lines)
|
||
|
|
||
|
|
||
|
def load_img_info(files, split):
|
||
|
"""Load the information of one image.
|
||
|
|
||
|
Args:
|
||
|
files(tuple): The tuple of (img_file, groundtruth_file)
|
||
|
split(str): The split of dataset: training or test
|
||
|
|
||
|
Returns:
|
||
|
img_info(dict): The dict of the img and annotation information
|
||
|
"""
|
||
|
assert isinstance(files, tuple)
|
||
|
assert isinstance(split, str)
|
||
|
|
||
|
img_file, gt_file = files
|
||
|
# read imgs with ignoring orientations
|
||
|
img = mmcv.imread(img_file, 'unchanged')
|
||
|
# read imgs with orientations as dataloader does when training and testing
|
||
|
img_color = mmcv.imread(img_file, 'color')
|
||
|
# make sure imgs have no orientation info, or annotation gt is wrong.
|
||
|
assert img.shape[0:2] == img_color.shape[0:2]
|
||
|
|
||
|
split_name = osp.basename(osp.dirname(img_file))
|
||
|
img_info = dict(
|
||
|
# remove img_prefix for filename
|
||
|
file_name=osp.join(split_name, osp.basename(img_file)),
|
||
|
height=img.shape[0],
|
||
|
width=img.shape[1],
|
||
|
# anno_info=anno_info,
|
||
|
segm_file=osp.join(split_name, osp.basename(gt_file)))
|
||
|
|
||
|
if split == 'training':
|
||
|
img_info = load_mat_info(img_info, gt_file, split)
|
||
|
elif split == 'test':
|
||
|
img_info = load_mat_info(img_info, gt_file, split)
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
return img_info
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description='Convert totaltext annotations to COCO format')
|
||
|
parser.add_argument('root_path', help='totaltext root path')
|
||
|
parser.add_argument('-o', '--out-dir', help='output path')
|
||
|
parser.add_argument(
|
||
|
'--split-list',
|
||
|
nargs='+',
|
||
|
help='a list of splits. e.g., "--split_list training test"')
|
||
|
|
||
|
parser.add_argument(
|
||
|
'--nproc', default=1, type=int, help='number of process')
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
root_path = args.root_path
|
||
|
out_dir = args.out_dir if args.out_dir else root_path
|
||
|
mmcv.mkdir_or_exist(out_dir)
|
||
|
|
||
|
img_dir = osp.join(root_path, 'imgs')
|
||
|
gt_dir = osp.join(root_path, 'annotations')
|
||
|
|
||
|
set_name = {}
|
||
|
for split in args.split_list:
|
||
|
set_name.update({split: 'instances_' + split + '.json'})
|
||
|
assert osp.exists(osp.join(img_dir, split))
|
||
|
|
||
|
for split, json_name in set_name.items():
|
||
|
print(f'Converting {split} into {json_name}')
|
||
|
with mmcv.Timer(
|
||
|
print_tmpl='It takes {}s to convert totaltext annotation'):
|
||
|
files = collect_files(
|
||
|
osp.join(img_dir, split), osp.join(gt_dir, split), split)
|
||
|
image_infos = collect_annotations(files, split, nproc=args.nproc)
|
||
|
generate_ann(root_path, split, image_infos)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|