mirror of https://github.com/open-mmlab/mmocr.git
81 lines
2.5 KiB
Python
81 lines
2.5 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import argparse
|
||
|
import json
|
||
|
import os.path as osp
|
||
|
|
||
|
from mmocr.utils.fileio import list_to_file
|
||
|
|
||
|
|
||
|
def convert_annotations(root_path, split, format):
|
||
|
"""Convert original annotations to mmocr format.
|
||
|
|
||
|
The annotation format is as the following:
|
||
|
Crops/val/11/1/1.png weighted
|
||
|
Crops/val/11/1/2.png 26
|
||
|
Crops/val/11/1/3.png casting
|
||
|
Crops/val/11/1/4.png 28
|
||
|
After this module, the annotation has been changed to the format below:
|
||
|
jsonl:
|
||
|
{'filename': 'Crops/val/11/1/1.png', 'text': 'weighted'}
|
||
|
{'filename': 'Crops/val/11/1/1.png', 'text': '26'}
|
||
|
{'filename': 'Crops/val/11/1/1.png', 'text': 'casting'}
|
||
|
{'filename': 'Crops/val/11/1/1.png', 'text': '28'}
|
||
|
|
||
|
Args:
|
||
|
root_path (str): The root path of the dataset
|
||
|
split (str): The split of dataset. Namely: training or test
|
||
|
format (str): Annotation format, should be either 'txt' or 'jsonl'
|
||
|
"""
|
||
|
assert isinstance(root_path, str)
|
||
|
assert isinstance(split, str)
|
||
|
|
||
|
if format == 'txt': # LV has already provided txt format annos
|
||
|
return
|
||
|
|
||
|
if format == 'jsonl':
|
||
|
lines = []
|
||
|
with open(
|
||
|
osp.join(root_path, f'{split}_label.txt'),
|
||
|
encoding='"utf-8-sig') as f:
|
||
|
annos = f.readlines()
|
||
|
for anno in annos:
|
||
|
if anno:
|
||
|
# Text may contain spaces
|
||
|
dst_img_name, word = anno.split('png ')
|
||
|
word = word.strip('\n')
|
||
|
lines.append(
|
||
|
json.dumps({
|
||
|
'filename': dst_img_name + 'png',
|
||
|
'text': word
|
||
|
}))
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
list_to_file(osp.join(root_path, f'{split}_label.{format}'), lines)
|
||
|
|
||
|
|
||
|
def parse_args():
|
||
|
parser = argparse.ArgumentParser(
|
||
|
description='Generate training and test set of Lecture Video DB')
|
||
|
parser.add_argument('root_path', help='Root dir path of Lecture Video DB')
|
||
|
parser.add_argument(
|
||
|
'--format',
|
||
|
default='jsonl',
|
||
|
help='Use jsonl or string to format annotations',
|
||
|
choices=['jsonl', 'txt'])
|
||
|
args = parser.parse_args()
|
||
|
return args
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = parse_args()
|
||
|
root_path = args.root_path
|
||
|
|
||
|
for split in ['train', 'val', 'test']:
|
||
|
convert_annotations(root_path, split, args.format)
|
||
|
print(f'{split} split converted.')
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|