If you are experienced with PyTorch and have already installed it, just skip this part and jump to the [next section](#installation-steps). Otherwise, you can follow these steps for the preparation.
```
**Step 0.** Download and install Miniconda from the [official website](https://docs.conda.io/en/latest/miniconda.html).
**Step 1.** Create a conda environment and activate it.
```shell
conda create --name openmmlab python=3.8 -y
conda activate openmmlab
```
**Step 2.** Install PyTorch following [official instructions](https://pytorch.org/get-started/locally/), e.g.
We recommend that users follow our best practices to install MMOCR. However, the whole process is highly customizable. See [Customize Installation](#customize-installation) section for more information.
**Step 0.** Install [MMEngine](https://github.com/open-mmlab/mmengine), [MMCV](https://github.com/open-mmlab/mmcv) and [MMDetection](https://github.com/open-mmlab/mmdetection) using [MIM](https://github.com/open-mmlab/mim).
**Step 2. (Optional)** If you wish to use any transform involving `albumentations` (For example, `Albu` in ABINet's pipeline), install the dependency using the following command:
We recommend checking the environment after installing `albumentations` to
ensure that `opencv-python` and `opencv-python-headless` are not installed together, otherwise it might cause unexpected issues. If that's unfortunately the case, please uninstall `opencv-python-headless` to make sure MMOCR's visualization utilities can work.
to [albumentations's official documentation](https://albumentations.ai/docs/getting_started/installation/#note-on-opencv-dependencies) for more details.
When installing PyTorch, you need to specify the version of CUDA. If you are not clear on which to choose, follow our recommendations:
- For Ampere-based NVIDIA GPUs, such as GeForce 30 series and NVIDIA A100, CUDA 11 is a must.
- For older NVIDIA GPUs, CUDA 11 is backward compatible, but CUDA 10.2 offers better compatibility and is more lightweight.
Please make sure the GPU driver satisfies the minimum version requirements. See [this table](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions) for more information.
```{note}
Installing CUDA runtime libraries is enough if you follow our best practices, because no CUDA code will be compiled locally. However if you hope to compile MMCV from source or develop other CUDA operators, you need to install the complete CUDA toolkit from NVIDIA's [website](https://developer.nvidia.com/cuda-downloads), and its version should match the CUDA version of PyTorch. i.e., the specified version of cudatoolkit in `conda install` command.
```
### Install MMCV without MIM
MMCV contains C++ and CUDA extensions, thus depending on PyTorch in a complex way. MIM solves such dependencies automatically and makes the installation easier. However, it is not a must.
To install MMCV with pip instead of MIM, please follow [MMCV installation guides](https://mmcv.readthedocs.io/en/latest/get_started/installation.html). This requires manually specifying a find-url based on PyTorch version and its CUDA version.
For example, the following command install mmcv-full built for PyTorch 1.10.x and CUDA 11.3.
MMOCR has different version requirements on MMEngine, MMCV and MMDetection at each release to guarantee the implementation correctness. Please refer to the table below and ensure the package versions fit the requirement.