mmocr/docs/en/user_guides/data_prepare/recog.md

861 lines
34 KiB
Markdown
Raw Normal View History

# Text Recognition
```{note}
This page is a manual preparation guide for datasets not yet supported by [Dataset Preparer](./dataset_preparer.md), which all these scripts will be eventually migrated into.
```
2021-08-25 16:41:07 +08:00
## Overview
| Dataset | images | annotation file | annotation file |
| :-------------------: | :---------------------------------------------------: | :-------------------------------------------------------------: | :-------------------------------------------------------------: |
| | | training | test |
| coco_text | [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_labels.json](#TODO) | - |
| ICDAR2011 | [homepage](https://rrc.cvc.uab.es/?ch=1) | - | - |
| MJSynth (Syn90k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [subset_train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/Syn90k/subset_train_labels.json) \| [train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/Syn90k/train_labels.json) | - |
| SynthText (Synth800k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [alphanumeric_train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/SynthText/alphanumeric_train_labels.json) \|[subset_train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/SynthText/subset_train_labels.json) \| [train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/SynthText/train_labels.json) | - |
| SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/synthtext_add/train_labels.json) | - |
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) |
| DeText | [homepage](https://rrc.cvc.uab.es/?ch=9) | - | - |
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - |
| LSVT | [homepage](https://rrc.cvc.uab.es/?ch=16) | - | - |
| IMGUR | [homepage](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset) | - | - |
| KAIST | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) | - | - |
| MTWI | [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us) | - | - |
| ReCTS | [homepage](https://rrc.cvc.uab.es/?ch=12) | - | - |
| IIIT-ILST | [homepage](http://cvit.iiit.ac.in/research/projects/cvit-projects/iiit-ilst) | - | - |
| VinText | [homepage](https://github.com/VinAIResearch/dict-guided) | - | - |
| BID | [homepage](https://github.com/ricardobnjunior/Brazilian-Identity-Document-Dataset) | - | - |
| RCTW | [homepage](https://rctw.vlrlab.net/index.html) | - | - |
| HierText | [homepage](https://github.com/google-research-datasets/hiertext) | - | - |
| ArT | [homepage](https://rrc.cvc.uab.es/?ch=14) | - | - |
(\*) Since the official homepage is unavailable now, we provide an alternative for quick reference. However, we do not guarantee the correctness of the dataset.
2021-08-25 16:41:07 +08:00
### Install AWS CLI (optional)
- Since there are some datasets that require the [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html) to be installed in advance, we provide a quick installation guide here:
```bash
curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
unzip awscliv2.zip
sudo ./aws/install
./aws/install -i /usr/local/aws-cli -b /usr/local/bin
!aws configure
# this command will require you to input keys, you can skip them except
# for the Default region name
# AWS Access Key ID [None]:
# AWS Secret Access Key [None]:
# Default region name [None]: us-east-1
# Default output format [None]
```
## ICDAR 2011 (Born-Digital Images)
2021-08-25 16:41:07 +08:00
- Step1: Download `Challenge1_Training_Task3_Images_GT.zip`, `Challenge1_Test_Task3_Images.zip`, and `Challenge1_Test_Task3_GT.txt` from [homepage](https://rrc.cvc.uab.es/?ch=1&com=downloads) `Task 1.3: Word Recognition (2013 edition)`.
```bash
mkdir icdar2011 && cd icdar2011
mkdir annotations
# Download ICDAR 2011
wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task3_Images_GT.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task3_Images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task3_GT.txt --no-check-certificate
# For images
mkdir crops
unzip -q Challenge1_Training_Task3_Images_GT.zip -d crops/train
unzip -q Challenge1_Test_Task3_Images.zip -d crops/test
# For annotations
mv Challenge1_Test_Task3_GT.txt annotations && mv crops/train/gt.txt annotations/Challenge1_Train_Task3_GT.txt
```
- Step2: Convert original annotations to `train_labels.json` and `test_labels.json` with the following command:
```bash
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/ic11_converter.py PATH/TO/icdar2011
```
- After running the above codes, the directory structure should be as follows:
```text
├── icdar2011
│ ├── crops
│ ├── train_labels.json
│ └── test_labels.json
```
## coco_text
2021-08-25 16:41:07 +08:00
- Step1: Download from [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads)
- Step2: Download [train_labels.json](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_labels.json)
- After running the above codes, the directory structure
should be as follows:
```text
├── coco_text
│ ├── train_labels.json
│ └── train_words
```
## MJSynth (Syn90k)
- Step1: Download `mjsynth.tar.gz` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/)
- Step2: Download [train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/Syn90k/train_labels.json) (8,919,273 annotations) and [subset_train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/Syn90k/subset_train_labels.json) (2,400,000 randomly sampled annotations).
```{note}
Please make sure you're using the right annotation to train the model by checking its dataset specs in Model Zoo.
```
- Step3:
2021-08-25 16:41:07 +08:00
```bash
mkdir Syn90k && cd Syn90k
mv /path/to/mjsynth.tar.gz .
tar -xzf mjsynth.tar.gz
mv /path/to/subset_train_labels.json .
mv /path/to/train_labels.json .
2021-08-25 16:41:07 +08:00
# create soft link
cd /path/to/mmocr/data/recog/
2021-08-25 16:41:07 +08:00
ln -s /path/to/Syn90k Syn90k
2021-08-25 16:41:07 +08:00
```
- After running the above codes, the directory structure
should be as follows:
```text
├── Syn90k
│ ├── subset_train_labels.json
│ ├── train_labels.json
│ └── mnt
```
## SynthText (Synth800k)
2021-08-25 16:41:07 +08:00
- Step1: Download `SynthText.zip` from [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/)
- Step2: According to your actual needs, download the most appropriate one from the following options: [train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/SynthText/train_labels.json) (7,266,686 annotations), [subset_train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/SynthText/subset_train_labels.json) (2,400,000 randomly sampled annotations) and [alphanumeric_train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/SynthText/alphanumeric_train_labels.json) (7,239,272 annotations with alphanumeric characters only).
```{warning}
Please make sure you're using the right annotation to train the model by checking its dataset specs in Model Zoo.
```
2021-08-25 16:41:07 +08:00
- Step3:
```bash
mkdir SynthText && cd SynthText
mv /path/to/SynthText.zip .
unzip SynthText.zip
mv SynthText synthtext
mv /path/to/subset_train_labels.json .
mv /path/to/train_labels.json .
mv /path/to/alphanumeric_train_labels.json .
2021-08-25 16:41:07 +08:00
# create soft link
cd /path/to/mmocr/data/recog
ln -s /path/to/SynthText SynthText
```
2021-08-25 16:41:07 +08:00
- Step4: Generate cropped images and labels:
```bash
cd /path/to/mmocr
python tools/dataset_converters/textrecog/synthtext_converter.py data/recog/SynthText/gt.mat data/recog/SynthText/ data/recog/SynthText/synthtext/SynthText_patch_horizontal --n_proc 8
```
- After running the above codes, the directory structure
should be as follows:
```text
├── SynthText
│ ├── alphanumeric_train_labels.json
│ ├── subset_train_labels.json
│ ├── train_labels.json
│ └── synthtext
```
## SynthAdd
2021-08-25 16:41:07 +08:00
- Step1: Download `SynthText_Add.zip` from [SynthAdd](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x))
- Step2: Download [train_labels.json](https://download.openmmlab.com/mmocr/data/1.x/recog/synthtext_add/train_labels.json)
2021-08-25 16:41:07 +08:00
- Step3:
```bash
mkdir SynthAdd && cd SynthAdd
mv /path/to/SynthText_Add.zip .
unzip SynthText_Add.zip
2021-08-25 16:41:07 +08:00
mv /path/to/train_labels.json .
2021-08-25 16:41:07 +08:00
# create soft link
cd /path/to/mmocr/data/recog
2021-08-25 16:41:07 +08:00
ln -s /path/to/SynthAdd SynthAdd
```
2021-08-25 16:41:07 +08:00
- After running the above codes, the directory structure
should be as follows:
```text
├── SynthAdd
│ ├── train_labels.json
│ └── SynthText_Add
```
2021-08-25 16:41:07 +08:00
## OpenVINO
- Step1 (optional): Install [AWS CLI](https://mmocr.readthedocs.io/en/latest/datasets/recog.html#install-aws-cli-optional).
- Step2: Download [Open Images](https://github.com/cvdfoundation/open-images-dataset#download-images-with-bounding-boxes-annotations) subsets `train_1`, `train_2`, `train_5`, `train_f`, and `validation` to `openvino/`.
```bash
mkdir openvino && cd openvino
# Download Open Images subsets
for s in 1 2 5 f; do
aws s3 --no-sign-request cp s3://open-images-dataset/tar/train_${s}.tar.gz .
done
aws s3 --no-sign-request cp s3://open-images-dataset/tar/validation.tar.gz .
# Download annotations
for s in 1 2 5 f; do
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_train_${s}.json
done
wget https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text/text_spotting_openimages_v5_validation.json
# Extract images
mkdir -p openimages_v5/val
for s in 1 2 5 f; do
tar zxf train_${s}.tar.gz -C openimages_v5
done
tar zxf validation.tar.gz -C openimages_v5/val
```
- Step3: Generate `train_{1,2,5,f}_labels.json`, `val_labels.json` and crop images using 4 processes with the following command:
```bash
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/openvino_converter.py /path/to/openvino 4
```
- After running the above codes, the directory structure
should be as follows:
```text
├── OpenVINO
│ ├── image_1
│ ├── image_2
│ ├── image_5
│ ├── image_f
│ ├── image_val
│ ├── train_1_labels.json
│ ├── train_2_labels.json
│ ├── train_5_labels.json
│ ├── train_f_labels.json
│ └── val_labels.json
```
## DeText
- Step1: Download `ch9_training_images.zip`, `ch9_training_localization_transcription_gt.zip`, `ch9_validation_images.zip`, and `ch9_validation_localization_transcription_gt.zip` from **Task 3: End to End** on the [homepage](https://rrc.cvc.uab.es/?ch=9).
```bash
mkdir detext && cd detext
mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir annotations/training && mkdir annotations/val
# Download DeText
wget https://rrc.cvc.uab.es/downloads/ch9_training_images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_training_localization_transcription_gt.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.zip --no-check-certificate
# Extract images and annotations
unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_localization_transcription_gt.zip -d annotations/training && unzip -q ch9_validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_transcription_gt.zip -d annotations/val
# Remove zips
rm ch9_training_images.zip && rm ch9_training_localization_transcription_gt.zip && rm ch9_validation_images.zip && rm ch9_validation_localization_transcription_gt.zip
```
- Step2: Generate `train_labels.json` and `test_labels.json` with following command:
```bash
# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/detext/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/detext_converter.py PATH/TO/detext --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── detext
│ ├── crops
│ ├── ignores
│ ├── train_labels.json
│ └── test_labels.json
```
## NAF
- Step1: Download [labeled_images.tar.gz](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) to `naf/`.
```bash
mkdir naf && cd naf
# Download NAF dataset
wget https://github.com/herobd/NAF_dataset/releases/download/v1.0/labeled_images.tar.gz
tar -zxf labeled_images.tar.gz
# For images
mkdir annotations && mv labeled_images imgs
# For annotations
git clone https://github.com/herobd/NAF_dataset.git
mv NAF_dataset/train_valid_test_split.json annotations/ && mv NAF_dataset/groups annotations/
rm -rf NAF_dataset && rm labeled_images.tar.gz
```
- Step2: Generate `train_labels.json`, `val_labels.json`, and `test_labels.json` with following command:
```bash
# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/naf/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/naf_converter.py PATH/TO/naf --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── naf
│ ├── crops
│ ├── train_labels.json
│ ├── val_labels.json
│ └── test_labels.json
```
## Lecture Video DB
```{warning}
This section is not fully tested yet.
```
```{note}
The LV dataset has already provided cropped images and the corresponding annotations
```
- Step1: Download [IIIT-CVid.zip](http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip) to `lv/`.
```bash
mkdir lv && cd lv
# Download LV dataset
wget http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip
unzip -q IIIT-CVid.zip
# For image
mv IIIT-CVid/Crops ./
# For annotation
mv IIIT-CVid/train.txt train_labels.json && mv IIIT-CVid/val.txt val_label.txt && mv IIIT-CVid/test.txt test_labels.json
rm IIIT-CVid.zip
```
- Step2: Generate `train_labels.json`, `val.json`, and `test.json` with following command:
```bash
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textdreog/lv_converter.py PATH/TO/lv
```
- After running the above codes, the directory structure should be as follows:
```text
├── lv
│ ├── Crops
│ ├── train_labels.json
│ └── test_labels.json
```
## LSVT
```{warning}
This section is not fully tested yet.
```
- Step1: Download [train_full_images_0.tar.gz](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz), [train_full_images_1.tar.gz](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz), and [train_full_labels.json](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels.json) to `lsvt/`.
```bash
mkdir lsvt && cd lsvt
# Download LSVT dataset
wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz
wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz
wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels.json
mkdir annotations
tar -xf train_full_images_0.tar.gz && tar -xf train_full_images_1.tar.gz
mv train_full_labels.json annotations/ && mv train_full_images_1/*.jpg train_full_images_0/
mv train_full_images_0 imgs
rm train_full_images_0.tar.gz && rm train_full_images_1.tar.gz && rm -rf train_full_images_1
```
- Step2: Generate `train_labels.json` and `val_label.json` (optional) with the following command:
```bash
# Annotations of LSVT test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/lsvt/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textdrecog/lsvt_converter.py PATH/TO/lsvt --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── lsvt
│ ├── crops
│ ├── ignores
│ ├── train_labels.json
│ └── val_label.json (optional)
```
## IMGUR
```{warning}
This section is not fully tested yet.
```
- Step1: Run `download_imgur5k.py` to download images. You can merge [PR#5](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/pull/5) in your local repository to enable a **much faster** parallel execution of image download.
```bash
mkdir imgur && cd imgur
git clone https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset.git
# Download images from imgur.com. This may take SEVERAL HOURS!
python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs
# For annotations
mkdir annotations
mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations
rm -rf IMGUR5K-Handwriting-Dataset
```
- Step2: Generate `train_labels.json`, `val_label.txt` and `test_labels.json` and crop images with the following command:
```bash
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/imgur_converter.py PATH/TO/imgur
```
- After running the above codes, the directory structure should be as follows:
```text
├── imgur
│ ├── crops
│ ├── train_labels.json
│ ├── test_labels.json
│ └── val_label.json
```
## KAIST
```{warning}
This section is not fully tested yet.
```
- Step1: Download [KAIST_all.zip](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) to `kaist/`.
```bash
mkdir kaist && cd kaist
mkdir imgs && mkdir annotations
# Download KAIST dataset
wget http://www.iapr-tc11.org/dataset/KAIST_SceneText/KAIST_all.zip
unzip -q KAIST_all.zip && rm KAIST_all.zip
```
- Step2: Extract zips:
```bash
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/common/extract_kaist.py PATH/TO/kaist
```
- Step3: Generate `train_labels.json` and `val_label.json` (optional) with following command:
```bash
# Since KAIST does not provide an official split, you can split the dataset by adding --val-ratio 0.2
# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/kaist/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/kaist_converter.py PATH/TO/kaist --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── kaist
│ ├── crops
│ ├── ignores
│ ├── train_labels.json
│ └── val_label.json (optional)
```
## MTWI
```{warning}
This section is not fully tested yet.
```
- Step1: Download `mtwi_2018_train.zip` from [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us).
```bash
mkdir mtwi && cd mtwi
unzip -q mtwi_2018_train.zip
mv image_train imgs && mv txt_train annotations
rm mtwi_2018_train.zip
```
- Step2: Generate `train_labels.json` and `val_label.json` (optional) with the following command:
```bash
# Annotations of MTWI test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/mtwi/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/mtwi_converter.py PATH/TO/mtwi --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── mtwi
│ ├── crops
│ ├── train_labels.json
│ └── val_label.json (optional)
```
## ReCTS
```{warning}
This section is not fully tested yet.
```
- Step1: Download [ReCTS.zip](https://datasets.cvc.uab.es/rrc/ReCTS.zip) to `rects/` from the [homepage](https://rrc.cvc.uab.es/?ch=12&com=downloads).
```bash
mkdir rects && cd rects
# Download ReCTS dataset
# You can also find Google Drive link on the dataset homepage
wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate
unzip -q ReCTS.zip
mv img imgs && mv gt_unicode annotations
rm ReCTS.zip -f && rm -rf gt
```
- Step2: Generate `train_labels.json` and `val_label.json` (optional) with the following command:
```bash
# Annotations of ReCTS test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/rects/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/rects_converter.py PATH/TO/rects --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── rects
│ ├── crops
│ ├── ignores
│ ├── train_labels.json
│ └── val_label.json (optional)
```
## ILST
```{warning}
This section is not fully tested yet.
```
- Step1: Download `IIIT-ILST.zip` from [onedrive link](https://iiitaphyd-my.sharepoint.com/:f:/g/personal/minesh_mathew_research_iiit_ac_in/EtLvCozBgaBIoqglF4M-lHABMgNcCDW9rJYKKWpeSQEElQ?e=zToXZP)
- Step2: Run the following commands
```bash
unzip -q IIIT-ILST.zip && rm IIIT-ILST.zip
cd IIIT-ILST
# rename files
cd Devanagari && for i in `ls`; do mv -f $i `echo "devanagari_"$i`; done && cd ..
cd Malayalam && for i in `ls`; do mv -f $i `echo "malayalam_"$i`; done && cd ..
cd Telugu && for i in `ls`; do mv -f $i `echo "telugu_"$i`; done && cd ..
# transfer image path
mkdir imgs && mkdir annotations
mv Malayalam/{*jpg,*jpeg} imgs/ && mv Malayalam/*xml annotations/
mv Devanagari/*jpg imgs/ && mv Devanagari/*xml annotations/
mv Telugu/*jpeg imgs/ && mv Telugu/*xml annotations/
# remove unnecessary files
rm -rf Devanagari && rm -rf Malayalam && rm -rf Telugu && rm -rf README.txt
```
- Step3: Generate `train_labels.json` and `val_label.json` (optional) and crop images using 4 processes with the following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/ilst_converter.py PATH/TO/IIIT-ILST --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── IIIT-ILST
│ ├── crops
│ ├── ignores
│ ├── train_labels.json
│ └── val_label.json (optional)
```
## VinText
```{warning}
This section is not fully tested yet.
```
- Step1: Download [vintext.zip](https://drive.google.com/drive/my-drive) to `vintext`
```bash
mkdir vintext && cd vintext
# Download dataset from google drive
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml" -O vintext.zip && rm -rf /tmp/cookies.txt
# Extract images and annotations
unzip -q vintext.zip && rm vintext.zip
mv vietnamese/labels ./ && mv vietnamese/test_image ./ && mv vietnamese/train_images ./ && mv vietnamese/unseen_test_images ./
rm -rf vietnamese
# Rename files
mv labels annotations && mv test_image test && mv train_images training && mv unseen_test_images unseen_test
mkdir imgs
mv training imgs/ && mv test imgs/ && mv unseen_test imgs/
```
- Step2: Generate `train_labels.json`, `test_labels.json`, `unseen_test_labels.json`, and crop images using 4 processes with the following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts).
```bash
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/vintext_converter.py PATH/TO/vietnamese --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── vintext
│ ├── crops
│ ├── ignores
│ ├── train_labels.json
│ ├── test_labels.json
│ └── unseen_test_labels.json
```
## BID
```{warning}
This section is not fully tested yet.
```
- Step1: Download [BID Dataset.zip](https://drive.google.com/file/d/1Oi88TRcpdjZmJ79WDLb9qFlBNG8q2De6/view)
- Step2: Run the following commands to preprocess the dataset
```bash
# Rename
mv BID\ Dataset.zip BID_Dataset.zip
# Unzip and Rename
unzip -q BID_Dataset.zip && rm BID_Dataset.zip
mv BID\ Dataset BID
# The BID dataset has a problem of permission, and you may
# add permission for this file
chmod -R 777 BID
cd BID
mkdir imgs && mkdir annotations
# For images and annotations
mv CNH_Aberta/*in.jpg imgs && mv CNH_Aberta/*txt annotations && rm -rf CNH_Aberta
mv CNH_Frente/*in.jpg imgs && mv CNH_Frente/*txt annotations && rm -rf CNH_Frente
mv CNH_Verso/*in.jpg imgs && mv CNH_Verso/*txt annotations && rm -rf CNH_Verso
mv CPF_Frente/*in.jpg imgs && mv CPF_Frente/*txt annotations && rm -rf CPF_Frente
mv CPF_Verso/*in.jpg imgs && mv CPF_Verso/*txt annotations && rm -rf CPF_Verso
mv RG_Aberto/*in.jpg imgs && mv RG_Aberto/*txt annotations && rm -rf RG_Aberto
mv RG_Frente/*in.jpg imgs && mv RG_Frente/*txt annotations && rm -rf RG_Frente
mv RG_Verso/*in.jpg imgs && mv RG_Verso/*txt annotations && rm -rf RG_Verso
# Remove unnecessary files
rm -rf desktop.ini
```
- Step3: Generate `train_labels.json` and `val_label.json` (optional) and crop images using 4 processes with the following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if test-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
python tools/dataset_converters/textrecog/bid_converter.py PATH/TO/BID --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── BID
│ ├── crops
│ ├── ignores
│ ├── train_labels.json
│ └── val_label.json (optional)
```
## RCTW
```{warning}
This section is not fully tested yet.
```
- Step1: Download `train_images.zip.001`, `train_images.zip.002`, and `train_gts.zip` from the [homepage](https://rctw.vlrlab.net/dataset.html), extract the zips to `rctw/imgs` and `rctw/annotations`, respectively.
- Step2: Generate `train_labels.json` and `val_label.json` (optional). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
# Annotations of RCTW test split is not publicly available, split a validation set by adding --val-ratio 0.2
# Add --preserve-vertical to preserve vertical texts for training, otherwise vertical images will be filtered and stored in PATH/TO/rctw/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/rctw_converter.py PATH/TO/rctw --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── rctw
│   ├── crops
│   ├── ignores
│   ├── train_labels.json
│   └── val_label.json (optional)
```
## HierText
```{warning}
This section is not fully tested yet.
```
- Step1 (optional): Install [AWS CLI](https://mmocr.readthedocs.io/en/latest/datasets/recog.html#install-aws-cli-optional).
- Step2: Clone [HierText](https://github.com/google-research-datasets/hiertext) repo to get annotations
```bash
mkdir HierText
git clone https://github.com/google-research-datasets/hiertext.git
```
- Step3: Download `train.tgz`, `validation.tgz` from aws
```bash
aws s3 --no-sign-request cp s3://open-images-dataset/ocr/train.tgz .
aws s3 --no-sign-request cp s3://open-images-dataset/ocr/validation.tgz .
```
- Step4: Process raw data
```bash
# process annotations
mv hiertext/gt ./
rm -rf hiertext
mv gt annotations
gzip -d annotations/train.json.gz
gzip -d annotations/validation.json.gz
# process images
mkdir imgs
mv train.tgz imgs/
mv validation.tgz imgs/
tar -xzvf imgs/train.tgz
tar -xzvf imgs/validation.tgz
```
- Step5: Generate `train_labels.json` and `val_label.json`. HierText includes different levels of annotation, including `paragraph`, `line`, and `word`. Check the original [paper](https://arxiv.org/pdf/2203.15143.pdf) for details. E.g. set `--level paragraph` to get paragraph-level annotation. Set `--level line` to get line-level annotation. set `--level word` to get word-level annotation.
```bash
# Collect word annotation from HierText --level word
# Add --preserve-vertical to preserve vertical texts for training, otherwise vertical images will be filtered and stored in PATH/TO/HierText/ignores
2022-07-14 18:02:17 +08:00
python tools/dataset_converters/textrecog/hiertext_converter.py PATH/TO/HierText --level word --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── HierText
│   ├── crops
│   ├── ignores
│   ├── train_labels.json
│   └── val_label.json
```
## ArT
```{warning}
This section is not fully tested yet.
```
- Step1: Download `train_images.tar.gz`, and `train_labels.json` from the [homepage](https://rrc.cvc.uab.es/?ch=14&com=downloads) to `art/`
```bash
mkdir art && cd art
mkdir annotations
# Download ArT dataset
wget https://dataset-bj.cdn.bcebos.com/art/train_task2_images.tar.gz
wget https://dataset-bj.cdn.bcebos.com/art/train_task2_labels.json
# Extract
tar -xf train_task2_images.tar.gz
mv train_task2_images crops
mv train_task2_labels.json annotations/
# Remove unnecessary files
rm train_images.tar.gz
```
- Step2: Generate `train_labels.json` and `val_label.json` (optional). Since the test annotations are not publicly available, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
# Annotations of ArT test split is not publicly available, split a validation set by adding --val-ratio 0.2
python tools/dataset_converters/textrecog/art_converter.py PATH/TO/art
```
- After running the above codes, the directory structure should be as follows:
```text
│── art
│   ├── crops
│   ├── train_labels.json
│   └── val_label.json (optional)
```