mmocr/tools/data/textdet/ctw1500_converter.py

232 lines
7.1 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2021-04-03 01:03:52 +08:00
import argparse
import glob
import os.path as osp
import xml.etree.ElementTree as ET
from functools import partial
import mmcv
import numpy as np
from shapely.geometry import Polygon
from mmocr.utils import convert_annotations, list_from_file
2021-04-03 01:03:52 +08:00
def collect_files(img_dir, gt_dir, split):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir(str): The image directory
gt_dir(str): The groundtruth directory
split(str): The split of dataset. Namely: training or test
Returns:
files(list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
files = []
if split == 'training':
for img_file in imgs_list:
gt_file = gt_dir + '/' + osp.splitext(
osp.basename(img_file))[0] + '.xml'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
elif split == 'test':
for img_file in imgs_list:
gt_file = gt_dir + '/000' + osp.splitext(
osp.basename(img_file))[0] + '.txt'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, split, nproc=1):
"""Collect the annotation information.
Args:
files(list): The list of tuples (image_file, groundtruth_file)
split(str): The split of dataset. Namely: training or test
nproc(int): The number of process to collect annotations
Returns:
images(list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(split, str)
assert isinstance(nproc, int)
load_img_info_with_split = partial(load_img_info, split=split)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info_with_split, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info_with_split, files)
return images
def load_txt_info(gt_file, img_info):
anno_info = []
for line in list_from_file(gt_file):
2021-04-03 01:03:52 +08:00
# each line has one ploygen (n vetices), and one text.
# e.g., 695,885,866,888,867,1146,696,1143,####Latin 9
line = line.strip()
strs = line.split(',')
category_id = 1
assert strs[28][0] == '#'
xy = [int(x) for x in strs[0:28]]
assert len(xy) == 28
coordinates = np.array(xy).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
text = strs[28][4:]
2021-04-03 01:03:52 +08:00
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
text=text,
2021-04-03 01:03:52 +08:00
segmentation=[xy])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_xml_info(gt_file, img_info):
obj = ET.parse(gt_file)
anno_info = []
for image in obj.getroot(): # image
for box in image: # image
h = box.attrib['height']
w = box.attrib['width']
x = box.attrib['left']
y = box.attrib['top']
text = box[0].text
2021-04-03 01:03:52 +08:00
segs = box[1].text
pts = segs.strip().split(',')
pts = [int(x) for x in pts]
assert len(pts) == 28
# pts = []
# for iter in range(2,len(box)):
# pts.extend([int(box[iter].attrib['x']),
# int(box[iter].attrib['y'])])
iscrowd = 0
category_id = 1
bbox = [int(x), int(y), int(w), int(h)]
coordinates = np.array(pts).reshape(-1, 2)
polygon = Polygon(coordinates)
area = polygon.area
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
text=text,
2021-04-03 01:03:52 +08:00
segmentation=[pts])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_img_info(files, split):
"""Load the information of one image.
Args:
files(tuple): The tuple of (img_file, groundtruth_file)
split(str): The split of dataset: training or test
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
assert isinstance(split, str)
img_file, gt_file = files
# read imgs with ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
# anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
if split == 'training':
img_info = load_xml_info(gt_file, img_info)
elif split == 'test':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Convert ctw1500 annotations to COCO format')
parser.add_argument('root_path', help='ctw1500 root path')
parser.add_argument('-o', '--out-dir', help='output path')
parser.add_argument(
'--split-list',
nargs='+',
2021-06-01 21:59:40 +08:00
help='a list of splits. e.g., "--split-list training test"')
2021-04-03 01:03:52 +08:00
parser.add_argument(
'--nproc', default=1, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
out_dir = args.out_dir if args.out_dir else root_path
mmcv.mkdir_or_exist(out_dir)
img_dir = osp.join(root_path, 'imgs')
gt_dir = osp.join(root_path, 'annotations')
set_name = {}
for split in args.split_list:
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmcv.Timer(print_tmpl='It takes {}s to convert icdar annotation'):
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split), split)
image_infos = collect_annotations(files, split, nproc=args.nproc)
convert_annotations(image_infos, osp.join(out_dir, json_name))
if __name__ == '__main__':
main()