mmocr/docs/en/datasets/det.md

813 lines
44 KiB
Markdown
Raw Normal View History

2021-08-25 16:41:07 +08:00
# Text Detection
## Overview
| Dataset | Images | | Annotation Files | | |
| :---------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: | :---: |
| | | training | validation | testing | |
| CTW1500 | [homepage](https://github.com/Yuliang-Liu/Curve-Text-Detector) | - | - | - |
| ICDAR2011 | [homepage](https://rrc.cvc.uab.es/?ch=1) | - | - | |
| ICDAR2013 | [homepage](https://rrc.cvc.uab.es/?ch=2) | - | - | - |
| ICDAR2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) | - | [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json) |
| ICDAR2017 | [homepage](https://rrc.cvc.uab.es/?ch=8&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_training.json) | [instances_val.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_val.json) | - | | |
| Synthtext | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | instances_training.lmdb ([data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb), [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb)) | - | - |
| TextOCR | [homepage](https://textvqa.org/textocr/dataset) | - | - | - |
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | - |
| CurvedSynText150k | [homepage](https://github.com/aim-uofa/AdelaiDet/blob/master/datasets/README.md) \| [Part1](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) \| [Part2](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) | [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) | - | - |
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | - |
| DeText | [homepage](https://rrc.cvc.uab.es/?ch=9) | - | - | - |
| NAF | [homepage](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) | - | - | - |
| SROIE | [homepage](https://rrc.cvc.uab.es/?ch=13) | - | - | - |
| Lecture Video DB | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) | - | - | - |
| IMGUR | [homepage](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset) | - | - | - |
| KAIST | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) | - | - | - |
| MTWI | [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us) | - | - | - |
| COCO Text v2 | [homepage](https://bgshih.github.io/cocotext/) | - | - | - |
| ReCTS | [homepage](https://rrc.cvc.uab.es/?ch=12) | - | - | - |
| IIIT-ILST | [homepage](http://cvit.iiit.ac.in/research/projects/cvit-projects/iiit-ilst) | - | - | - |
| VinText | [homepage](https://github.com/VinAIResearch/dict-guided) | - | - | - |
| BID | [homepage](https://github.com/ricardobnjunior/Brazilian-Identity-Document-Dataset) | - | - | - |
2021-08-25 16:41:07 +08:00
## Important Note
:::{note}
**For users who want to train models on CTW1500, ICDAR 2015/2017, and Totaltext dataset,** there might be some images containing orientation info in EXIF data. The default OpenCV
2021-08-25 16:41:07 +08:00
backend used in MMCV would read them and apply the rotation on the images. However, their gold annotations are made on the raw pixels, and such
2022-01-05 21:44:13 +08:00
inconsistency results in false examples in the training set. Therefore, users should use `dict(type='LoadImageFromFile', color_type='color_ignore_orientation')` in pipelines to change MMCV's default loading behaviour. (see [DBNet's pipeline config](https://github.com/open-mmlab/mmocr/blob/main/configs/_base_/det_pipelines/dbnet_pipeline.py) for example)
:::
2021-08-25 16:41:07 +08:00
## CTW1500
2021-08-25 16:41:07 +08:00
- Step0: Read [Important Note](#important-note)
- Step1: Download `train_images.zip`, `test_images.zip`, `train_labels.zip`, `test_labels.zip` from [github](https://github.com/Yuliang-Liu/Curve-Text-Detector)
```bash
mkdir ctw1500 && cd ctw1500
mkdir imgs && mkdir annotations
# For annotations
cd annotations
wget -O train_labels.zip https://universityofadelaide.box.com/shared/static/jikuazluzyj4lq6umzei7m2ppmt3afyw.zip
wget -O test_labels.zip https://cloudstor.aarnet.edu.au/plus/s/uoeFl0pCN9BOCN5/download
unzip train_labels.zip && mv ctw1500_train_labels training
unzip test_labels.zip -d test
cd ..
# For images
cd imgs
wget -O train_images.zip https://universityofadelaide.box.com/shared/static/py5uwlfyyytbb2pxzq9czvu6fuqbjdh8.zip
wget -O test_images.zip https://universityofadelaide.box.com/shared/static/t4w48ofnqkdw7jyc4t11nsukoeqk9c3d.zip
unzip train_images.zip && mv train_images training
unzip test_images.zip && mv test_images test
```
2021-08-25 16:41:07 +08:00
- Step2: Generate `instances_training.json` and `instances_test.json` with following command:
```bash
python tools/data/textdet/ctw1500_converter.py /path/to/ctw1500 -o /path/to/ctw1500 --split-list training test
```
- The resulting directory structure looks like the following:
```text
├── ctw1500
│   ├── imgs
│   ├── annotations
│   ├── instances_training.json
│   └── instances_val.json
```
## ICDAR 2011 (Born-Digital Images)
2021-08-25 16:41:07 +08:00
- Step1: Download `Challenge1_Training_Task12_Images.zip`, `Challenge1_Training_Task1_GT.zip`, `Challenge1_Test_Task12_Images.zip`, and `Challenge1_Test_Task1_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=1&com=downloads) `Task 1.1: Text Localization (2013 edition)`.
```bash
mkdir icdar2011 && cd icdar2011
mkdir imgs && mkdir annotations
# Download ICDAR 2011
wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task12_Images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task1_GT.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task12_Images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task1_GT.zip --no-check-certificate
# For images
unzip -q Challenge1_Training_Task12_Images.zip -d imgs/training
unzip -q Challenge1_Test_Task12_Images.zip -d imgs/test
# For annotations
unzip -q Challenge1_Training_Task1_GT.zip -d annotations/training
unzip -q Challenge1_Test_Task1_GT.zip -d annotations/test
rm Challenge1_Training_Task12_Images.zip && rm Challenge1_Test_Task12_Images.zip && rm Challenge1_Training_Task1_GT.zip && rm Challenge1_Test_Task1_GT.zip
```
- Step 2: Generate `instances_training.json` and `instances_test.json` with the following command:
```bash
python tools/data/textdet/ic11_converter.py PATH/TO/icdar2011 --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── icdar2011
│ ├── imgs
│ ├── instances_test.json
│ └── instances_training.json
```
## ICDAR 2013 (Focused Scene Text)
- Step1: Download `Challenge2_Training_Task12_Images.zip`, `Challenge2_Test_Task12_Images.zip`, `Challenge2_Training_Task1_GT.zip`, and `Challenge2_Test_Task1_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) `Task 2.1: Text Localization (2013 edition)`.
```bash
mkdir icdar2013 && cd icdar2013
mkdir imgs && mkdir annotations
# Download ICDAR 2013
wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task12_Images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task12_Images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge2_Training_Task1_GT.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/Challenge2_Test_Task1_GT.zip --no-check-certificate
# For images
unzip -q Challenge2_Training_Task12_Images.zip -d imgs/training
unzip -q Challenge2_Test_Task12_Images.zip -d imgs/test
# For annotations
unzip -q Challenge2_Training_Task1_GT.zip -d annotations/training
unzip -q Challenge2_Test_Task1_GT.zip -d annotations/test
rm Challenge2_Training_Task12_Images.zip && rm Challenge2_Test_Task12_Images.zip && rm Challenge2_Training_Task1_GT.zip && rm Challenge2_Test_Task1_GT.zip
```
- Step 2: Generate `instances_training.json` and `instances_test.json` with the following command:
```bash
python tools/data/textdet/ic13_converter.py PATH/TO/icdar2013 --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── icdar2013
│ ├── imgs
│ ├── instances_test.json
│ └── instances_training.json
```
## ICDAR 2015
- Step0: Read [Important Note](#important-note)
- Step1: Download `ch4_training_images.zip`, `ch4_test_images.zip`, `ch4_training_localization_transcription_gt.zip`, `Challenge4_Test_Task1_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads)
- Step2:
```bash
mkdir icdar2015 && cd icdar2015
mkdir imgs && mkdir annotations
# For images,
mv ch4_training_images imgs/training
mv ch4_test_images imgs/test
# For annotations,
mv ch4_training_localization_transcription_gt annotations/training
mv Challenge4_Test_Task1_GT annotations/test
```
- Step3: Download [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) and [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json) and move them to `icdar2015`
- Or, generate `instances_training.json` and `instances_test.json` with the following command:
```bash
python tools/data/textdet/icdar_converter.py /path/to/icdar2015 -o /path/to/icdar2015 -d icdar2015 --split-list training test
```
- The resulting directory structure looks like the following:
```text
├── icdar2015
│   ├── imgs
│   ├── annotations
│   ├── instances_test.json
│   └── instances_training.json
```
## ICDAR 2017
- Follow similar steps as [ICDAR 2015](#icdar-2015).
- The resulting directory structure looks like the following:
```text
├── icdar2017
│   ├── imgs
│   ├── annotations
│   ├── instances_training.json
│   └── instances_val.json
```
## SynthText
- Step1: Download SynthText.zip from [homepage](<https://www.robots.ox.ac.uk/~vgg/data/scenetext/> and extract its content to `synthtext/img`.
- Step2: Download [data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb) and [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb) to `synthtext/instances_training.lmdb/`.
- The resulting directory structure looks like the following:
```text
├── synthtext
│   ├── imgs
│   └── instances_training.lmdb
│   ├── data.mdb
│   └── lock.mdb
```
2021-08-25 16:41:07 +08:00
## TextOCR
2021-08-25 16:41:07 +08:00
- Step1: Download [train_val_images.zip](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip), [TextOCR_0.1_train.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json) and [TextOCR_0.1_val.json](https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json) to `textocr/`.
```bash
mkdir textocr && cd textocr
# Download TextOCR dataset
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_train.json
wget https://dl.fbaipublicfiles.com/textvqa/data/textocr/TextOCR_0.1_val.json
# For images
unzip -q train_val_images.zip
mv train_images train
```
2021-08-25 16:41:07 +08:00
- Step2: Generate `instances_training.json` and `instances_val.json` with the following command:
```bash
python tools/data/textdet/textocr_converter.py /path/to/textocr
```
- The resulting directory structure looks like the following:
```text
├── textocr
│   ├── train
│   ├── instances_training.json
│   └── instances_val.json
```
## Totaltext
2021-08-25 16:41:07 +08:00
- Step0: Read [Important Note](#important-note)
- Step1: Download `totaltext.zip` from [github dataset](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Dataset) and `groundtruth_text.zip` from [github Groundtruth](https://github.com/cs-chan/Total-Text-Dataset/tree/master/Groundtruth/Text) (Our totaltext_converter.py supports groundtruth with both .mat and .txt format).
```bash
mkdir totaltext && cd totaltext
mkdir imgs && mkdir annotations
# For images
# in ./totaltext
unzip totaltext.zip
mv Images/Train imgs/training
mv Images/Test imgs/test
# For annotations
unzip groundtruth_text.zip
cd Groundtruth
mv Polygon/Train ../annotations/training
mv Polygon/Test ../annotations/test
```
2021-08-25 16:41:07 +08:00
- Step2: Generate `instances_training.json` and `instances_test.json` with the following command:
```bash
python tools/data/textdet/totaltext_converter.py /path/to/totaltext -o /path/to/totaltext --split-list training test
```
- The resulting directory structure looks like the following:
```text
├── totaltext
│   ├── imgs
│   ├── annotations
│   ├── instances_test.json
│   └── instances_training.json
```
## CurvedSynText150k
- Step1: Download [syntext1.zip](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) and [syntext2.zip](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) to `CurvedSynText150k/`.
- Step2:
```bash
unzip -q syntext1.zip
mv train.json train1.json
unzip images.zip
rm images.zip
unzip -q syntext2.zip
mv train.json train2.json
unzip images.zip
rm images.zip
```
- Step3: Download [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) to `CurvedSynText150k/`
- Or, generate `instances_training.json` with following command:
```bash
python tools/data/common/curvedsyntext_converter.py PATH/TO/CurvedSynText150k --nproc 4
```
- The resulting directory structure looks like the following:
```text
├── CurvedSynText150k
│   ├── syntext_word_eng
│   ├── emcs_imgs
│   └── instances_training.json
```
## FUNSD
- Step1: Download [dataset.zip](https://guillaumejaume.github.io/FUNSD/dataset.zip) to `funsd/`.
```bash
mkdir funsd && cd funsd
# Download FUNSD dataset
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
unzip -q dataset.zip
# For images
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/
# For annotations
mkdir annotations
mv dataset/training_data/annotations annotations/training && mv dataset/testing_data/annotations annotations/test
rm dataset.zip && rm -rf dataset
```
- Step2: Generate `instances_training.json` and `instances_test.json` with following command:
```bash
python tools/data/textdet/funsd_converter.py PATH/TO/funsd --nproc 4
```
- The resulting directory structure looks like the following:
```text
│── funsd
│   ├── annotations
│   ├── imgs
│   ├── instances_test.json
│   └── instances_training.json
```
## DeText
- Step1: Download `ch9_training_images.zip`, `ch9_training_localization_transcription_gt.zip`, `ch9_validation_images.zip`, and `ch9_validation_localization_transcription_gt.zip` from **Task 3: End to End** on the [homepage](https://rrc.cvc.uab.es/?ch=9).
```bash
mkdir detext && cd detext
mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir annotations/training && mkdir annotations/val
# Download DeText
wget https://rrc.cvc.uab.es/downloads/ch9_training_images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_training_localization_transcription_gt.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-certificate
wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.zip --no-check-certificate
# Extract images and annotations
unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_localization_transcription_gt.zip -d annotations/training && unzip -q ch9_validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_transcription_gt.zip -d annotations/val
# Remove zips
rm ch9_training_images.zip && rm ch9_training_localization_transcription_gt.zip && rm ch9_validation_images.zip && rm ch9_validation_localization_transcription_gt.zip
```
- Step2: Generate `instances_training.json` and `instances_val.json` with following command:
```bash
python tools/data/textdet/detext_converter.py PATH/TO/detext --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── detext
│   ├── annotations
│   ├── imgs
│   ├── instances_test.json
│   └── instances_training.json
```
## NAF
- Step1: Download [labeled_images.tar.gz](https://github.com/herobd/NAF_dataset/releases/tag/v1.0) to `naf/`.
```bash
mkdir naf && cd naf
# Download NAF dataset
wget https://github.com/herobd/NAF_dataset/releases/download/v1.0/labeled_images.tar.gz
tar -zxf labeled_images.tar.gz
# For images
mkdir annotations && mv labeled_images imgs
# For annotations
git clone https://github.com/herobd/NAF_dataset.git
mv NAF_dataset/train_valid_test_split.json annotations/ && mv NAF_dataset/groups annotations/
rm -rf NAF_dataset && rm labeled_images.tar.gz
```
- Step2: Generate `instances_training.json`, `instances_val.json`, and `instances_test.json` with following command:
```bash
python tools/data/textdet/naf_converter.py PATH/TO/naf --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── naf
│   ├── annotations
│   ├── imgs
│   ├── instances_test.json
│   ├── instances_val.json
│   └── instances_training.json
```
## SROIE
- Step1: Download `0325updated.task1train(626p).zip`, `task1&2_test(361p).zip`, and `text.task1&2-test361p).zip` from [homepage](https://rrc.cvc.uab.es/?ch=13&com=downloads) to `sroie/`
- Step2:
```bash
mkdir sroie && cd sroie
mkdir imgs && mkdir annotations && mkdir imgs/training
# Warnninig: The zip files downloaded from Google Drive and BaiduYun Cloud may
# be different, the user should revise the following commands to the correct
# file name if encounter with errors while extracting and move the files.
unzip -q 0325updated.task1train\(626p\).zip && unzip -q task1\&2_test\(361p\).zip && unzip -q text.task1\&2-test361p\).zip
# For images
mv 0325updated.task1train\(626p\)/*.jpg imgs/training && mv fulltext_test\(361p\) imgs/test
# For annotations
mv 0325updated.task1train\(626p\) annotations/training && mv text.task1\&2-testги361p\)/ annotations/test
rm 0325updated.task1train\(626p\).zip && rm task1\&2_test\(361p\).zip && rm text.task1\&2-test361p\).zip
```
- Step3: Generate `instances_training.json` and `instances_test.json` with the following command:
```bash
python tools/data/textdet/sroie_converter.py PATH/TO/sroie --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
├── sroie
│   ├── annotations
│   ├── imgs
│   ├── instances_test.json
│   └── instances_training.json
```
## Lecture Video DB
- Step1: Download [IIIT-CVid.zip](http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip) to `lv/`.
```bash
mkdir lv && cd lv
# Download LV dataset
wget http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip
unzip -q IIIT-CVid.zip
mv IIIT-CVid/Frames imgs
rm IIIT-CVid.zip
```
- Step2: Generate `instances_training.json`, `instances_val.json`, and `instances_test.json` with following command:
```bash
python tools/data/textdet/lv_converter.py PATH/TO/lv --nproc 4
```
- The resulting directory structure looks like the following:
```text
│── lv
│   ├── imgs
│   ├── instances_test.json
│   └── instances_training.json
│   └── instances_val.json
```
## IMGUR
- Step1: Run `download_imgur5k.py` to download images. You can merge [PR#5](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/pull/5) in your local repository to enable a **much faster** parallel execution of image download.
```bash
mkdir imgur && cd imgur
git clone https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset.git
# Download images from imgur.com. This may take SEVERAL HOURS!
python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs
# For annotations
mkdir annotations
mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations
rm -rf IMGUR5K-Handwriting-Dataset
```
- Step2: Generate `instances_train.json`, `instance_val.json` and `instances_test.json` with the following command:
```bash
python tools/data/textdet/imgur_converter.py PATH/TO/imgur
```
- After running the above codes, the directory structure should be as follows:
```
│── imgur
│ ├── annotations
│ ├── imgs
│ ├── instances_test.json
│ ├── instances_training.json
│ └── instances_val.json
```
## KAIST
- Step1: Complete download [KAIST_all.zip](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) to `kaist/`.
```bash
mkdir kaist && cd kaist
mkdir imgs && mkdir annotations
# Download KAIST dataset
wget http://www.iapr-tc11.org/dataset/KAIST_SceneText/KAIST_all.zip
unzip -q KAIST_all.zip
rm KAIST_all.zip
```
- Step2: Extract zips:
```bash
python tools/data/common/extract_kaist.py PATH/TO/kaist
```
- Step3: Generate `instances_training.json` and `instances_val.json` (optional) with following command:
```bash
# Since KAIST does not provide an official split, you can split the dataset by adding --val-ratio 0.2
python tools/data/textdet/kaist_converter.py PATH/TO/kaist --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── kaist
│ ├── annotations
│ ├── imgs
│ ├── instances_training.json
│ └── instances_val.json (optional)
```
## MTWI
- Step1: Download `mtwi_2018_train.zip` from [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us).
```bash
mkdir mtwi && cd mtwi
unzip -q mtwi_2018_train.zip
mv image_train imgs && mv txt_train annotations
rm mtwi_2018_train.zip
```
- Step2: Generate `instances_training.json` and `instance_val.json` (optional) with the following command:
```bash
# Annotations of MTWI test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
python tools/data/textdet/mtwi_converter.py PATH/TO/mtwi --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── mtwi
│ ├── annotations
│ ├── imgs
│ ├── instances_training.json
│ └── instances_val.json (optional)
```
## COCO Text v2
- Step1: Download image [train2014.zip](http://images.cocodataset.org/zips/train2014.zip) and annotation [cocotext.v2.zip](https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip) to `coco_textv2/`.
```bash
mkdir coco_textv2 && cd coco_textv2
mkdir annotations
# Download COCO Text v2 dataset
wget http://images.cocodataset.org/zips/train2014.zip
wget https://github.com/bgshih/cocotext/releases/download/dl/cocotext.v2.zip
unzip -q train2014.zip && unzip -q cocotext.v2.zip
mv train2014 imgs && mv cocotext.v2.json annotations/
rm train2014.zip && rm -rf cocotext.v2.zip
```
- Step2: Generate `instances_training.json` and `instances_val.json` with the following command:
```bash
python tools/data/textdet/cocotext_converter.py PATH/TO/coco_textv2
```
- After running the above codes, the directory structure should be as follows:
```text
│── coco_textv2
│ ├── annotations
│ ├── imgs
│ ├── instances_training.json
│ └── instances_val.json
```
## ReCTS
- Step1: Download [ReCTS.zip](https://datasets.cvc.uab.es/rrc/ReCTS.zip) to `rects/` from the [homepage](https://rrc.cvc.uab.es/?ch=12&com=downloads).
```bash
mkdir rects && cd rects
# Download ReCTS dataset
# You can also find Google Drive link on the dataset homepage
wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate
unzip -q ReCTS.zip
mv img imgs && mv gt_unicode annotations
rm ReCTS.zip && rm -rf gt
```
- Step2: Generate `instances_training.json` and `instances_val.json` (optional) with following command:
```bash
# Annotations of ReCTS test split is not publicly available, split a validation
# set by adding --val-ratio 0.2
# Add --preserve-vertical to preserve vertical texts for training, otherwise
# vertical images will be filtered and stored in PATH/TO/rects/ignores
python tools/data/textdet/rects_converter.py PATH/TO/rects --nproc 4 --val-ratio 0.2
```
- After running the above codes, the directory structure should be as follows:
```text
│── rects
│ ├── annotations
│ ├── imgs
│ ├── instances_val.json (optional)
│ └── instances_training.json
```
## ILST
- Step1: Download `IIIT-ILST` from [onedrive](https://iiitaphyd-my.sharepoint.com/:f:/g/personal/minesh_mathew_research_iiit_ac_in/EtLvCozBgaBIoqglF4M-lHABMgNcCDW9rJYKKWpeSQEElQ?e=zToXZP)
- Step2: Run the following commands
```bash
unzip -q IIIT-ILST.zip && rm IIIT-ILST.zip
cd IIIT-ILST
# rename files
cd Devanagari && for i in `ls`; do mv -f $i `echo "devanagari_"$i`; done && cd ..
cd Malayalam && for i in `ls`; do mv -f $i `echo "malayalam_"$i`; done && cd ..
cd Telugu && for i in `ls`; do mv -f $i `echo "telugu_"$i`; done && cd ..
# transfer image path
mkdir imgs && mkdir annotations
mv Malayalam/{*jpg,*jpeg} imgs/ && mv Malayalam/*xml annotations/
mv Devanagari/*jpg imgs/ && mv Devanagari/*xml annotations/
mv Telugu/*jpeg imgs/ && mv Telugu/*xml annotations/
# remove unnecessary files
rm -rf Devanagari && rm -rf Malayalam && rm -rf Telugu && rm -rf README.txt
```
- Step3: Generate `instances_training.json` and `instances_val.json` (optional). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
python tools/data/textdet/ilst_converter.py PATH/TO/IIIT-ILST --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── IIIT-ILST
│   ├── annotations
│   ├── imgs
│   ├── instances_val.json (optional)
│   └── instances_training.json
```
## VinText
- Step1: Download [vintext.zip](https://drive.google.com/drive/my-drive) to `vintext`
```bash
mkdir vintext && cd vintext
# Download dataset from google drive
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml' -O- │ sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml" -O vintext.zip && rm -rf /tmp/cookies.txt
# Extract images and annotations
unzip -q vintext.zip && rm vintext.zip
mv vietnamese/labels ./ && mv vietnamese/test_image ./ && mv vietnamese/train_images ./ && mv vietnamese/unseen_test_images ./
rm -rf vietnamese
# Rename files
mv labels annotations && mv test_image test && mv train_images training && mv unseen_test_images unseen_test
mkdir imgs
mv training imgs/ && mv test imgs/ && mv unseen_test imgs/
```
- Step2: Generate `instances_training.json`, `instances_test.json` and `instances_unseen_test.json`
```bash
python tools/data/textdet/vintext_converter.py PATH/TO/vintext --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── vintext
│   ├── annotations
│   ├── imgs
│   ├── instances_test.json
│   ├── instances_unseen_test.json
│   └── instances_training.json
```
## BID
- Step1: Download [BID Dataset.zip](https://drive.google.com/file/d/1Oi88TRcpdjZmJ79WDLb9qFlBNG8q2De6/view)
- Step2: Run the following commands to preprocess the dataset
```bash
# Rename
mv BID\ Dataset.zip BID_Dataset.zip
# Unzip and Rename
unzip -q BID_Dataset.zip && rm BID_Dataset.zip
mv BID\ Dataset BID
# The BID dataset has a problem of permission, and you may
# add permission for this file
chmod -R 777 BID
cd BID
mkdir imgs && mkdir annotations
# For images and annotations
mv CNH_Aberta/*in.jpg imgs && mv CNH_Aberta/*txt annotations && rm -rf CNH_Aberta
mv CNH_Frente/*in.jpg imgs && mv CNH_Frente/*txt annotations && rm -rf CNH_Frente
mv CNH_Verso/*in.jpg imgs && mv CNH_Verso/*txt annotations && rm -rf CNH_Verso
mv CPF_Frente/*in.jpg imgs && mv CPF_Frente/*txt annotations && rm -rf CPF_Frente
mv CPF_Verso/*in.jpg imgs && mv CPF_Verso/*txt annotations && rm -rf CPF_Verso
mv RG_Aberto/*in.jpg imgs && mv RG_Aberto/*txt annotations && rm -rf RG_Aberto
mv RG_Frente/*in.jpg imgs && mv RG_Frente/*txt annotations && rm -rf RG_Frente
mv RG_Verso/*in.jpg imgs && mv RG_Verso/*txt annotations && rm -rf RG_Verso
# Remove unnecessary files
rm -rf desktop.ini
```
- Step3: - Step3: Generate `instances_training.json` and `instances_val.json` (optional). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
python tools/data/textrecog/bid_converter.py PATH/TO/BID --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── BID
│   ├── annotations
│   ├── imgs
│   ├── instances_training.json
│   └── instances_val.json (optional)
```