mmocr/tools/data/textdet/totaltext_converter.py

409 lines
12 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2021-04-03 01:03:52 +08:00
import argparse
import glob
import os
2021-04-03 01:03:52 +08:00
import os.path as osp
import re
2021-04-03 01:03:52 +08:00
import cv2
import mmcv
import numpy as np
import scipy.io as scio
import yaml
2021-04-03 01:03:52 +08:00
from shapely.geometry import Polygon
from mmocr.utils import convert_annotations
2021-04-03 01:03:52 +08:00
def collect_files(img_dir, gt_dir):
2021-04-03 01:03:52 +08:00
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
2021-04-03 01:03:52 +08:00
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
2021-04-03 01:03:52 +08:00
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
# suffixes = ['.png']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
imgs_list = sorted(imgs_list)
ann_list = sorted(
[osp.join(gt_dir, gt_file) for gt_file in os.listdir(gt_dir)])
files = list(zip(imgs_list, ann_list))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
2021-04-03 01:03:52 +08:00
return files
def collect_annotations(files, nproc=1):
2021-04-03 01:03:52 +08:00
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
2021-04-03 01:03:52 +08:00
Returns:
images (list): The list of image information dicts
2021-04-03 01:03:52 +08:00
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info, files, nproc=nproc)
2021-04-03 01:03:52 +08:00
else:
images = mmcv.track_progress(load_img_info, files)
2021-04-03 01:03:52 +08:00
return images
def get_contours_mat(gt_path):
"""Get the contours and words for each ground_truth mat file.
2021-04-03 01:03:52 +08:00
Args:
gt_path (str): The relative path of the ground_truth mat file
2021-04-03 01:03:52 +08:00
Returns:
contours (list[lists]): A list of lists of contours
for the text instances
words (list[list]): A list of lists of words (string)
for the text instances
2021-04-03 01:03:52 +08:00
"""
assert isinstance(gt_path, str)
contours = []
words = []
data = scio.loadmat(gt_path)
# 'gt' for the latest version; 'polygt' for the legacy version
keys = data.keys()
if 'gt' in keys:
data_polygt = data.get('gt')
elif 'polygt' in keys:
data_polygt = data.get('polygt')
else:
raise NotImplementedError
2021-04-03 01:03:52 +08:00
for i, lines in enumerate(data_polygt):
X = np.array(lines[1])
Y = np.array(lines[3])
point_num = len(X[0])
word = lines[4]
if len(word) == 0 or word == '#':
word = '###'
2021-04-03 01:03:52 +08:00
else:
word = word[0]
words.append(word)
arr = np.concatenate([X, Y]).T
contour = []
for i in range(point_num):
contour.append(arr[i][0])
contour.append(arr[i][1])
contours.append(np.asarray(contour))
return contours, words
def load_mat_info(img_info, gt_file):
2021-04-03 01:03:52 +08:00
"""Load the information of one ground truth in .mat format.
Args:
img_info (dict): The dict of only the image information
gt_file (str): The relative path of the ground_truth mat
file for one image
2021-04-03 01:03:52 +08:00
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(img_info, dict)
assert isinstance(gt_file, str)
contours, texts = get_contours_mat(gt_file)
anno_info = []
for contour, text in zip(contours, texts):
if contour.shape[0] == 2:
continue
category_id = 1
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 1 if text == '###' else 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
text=text,
segmentation=[contour])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def process_line(line, contours, words):
"""Get the contours and words by processing each line in the gt file.
Args:
line(str): The line in gt file containing annotation info
contours(list[lists]): A list of lists of contours
for the text instances
words(list[list]): A list of lists of words (string)
for the text instances
Returns:
contours (list[lists]): A list of lists of contours
for the text instances
words (list[list]): A list of lists of words (string)
for the text instances
"""
line = '{' + line.replace('[[', '[').replace(']]', ']') + '}'
ann_dict = re.sub('([0-9]) +([0-9])', r'\1,\2', line)
ann_dict = re.sub('([0-9]) +([ 0-9])', r'\1,\2', ann_dict)
ann_dict = re.sub('([0-9]) -([0-9])', r'\1,-\2', ann_dict)
ann_dict = ann_dict.replace("[u',']", "[u'#']")
ann_dict = yaml.safe_load(ann_dict)
X = np.array([ann_dict['x']])
Y = np.array([ann_dict['y']])
if len(ann_dict['transcriptions']) == 0:
word = '###'
else:
word = ann_dict['transcriptions'][0]
if len(ann_dict['transcriptions']) > 1:
for ann_word in ann_dict['transcriptions'][1:]:
word += ',' + ann_word
word = str(eval(word))
words.append(word)
point_num = len(X[0])
arr = np.concatenate([X, Y]).T
contour = []
for i in range(point_num):
contour.append(arr[i][0])
contour.append(arr[i][1])
contours.append(np.asarray(contour))
return contours, words
def get_contours_txt(gt_path):
"""Get the contours and words for each ground_truth txt file.
Args:
gt_path (str): The relative path of the ground_truth mat file
Returns:
contours (list[lists]): A list of lists of contours
for the text instances
words (list[list]): A list of lists of words (string)
for the text instances
"""
assert isinstance(gt_path, str)
contours = []
words = []
with open(gt_path, 'r') as f:
tmp_line = ''
for idx, line in enumerate(f):
line = line.strip()
if idx == 0:
tmp_line = line
continue
if not line.startswith('x:'):
tmp_line += ' ' + line
continue
else:
complete_line = tmp_line
tmp_line = line
contours, words = process_line(complete_line, contours, words)
if tmp_line != '':
contours, words = process_line(tmp_line, contours, words)
words = ['###' if word == '#' else word for word in words]
return contours, words
def load_txt_info(gt_file, img_info):
"""Load the information of one ground truth in .txt format.
Args:
img_info (dict): The dict of only the image information
gt_file (str): The relative path of the ground_truth mat
file for one image
Returns:
img_info(dict): The dict of the img and annotation information
"""
contours, texts = get_contours_txt(gt_file)
2021-04-03 01:03:52 +08:00
anno_info = []
for contour, text in zip(contours, texts):
2021-04-03 01:03:52 +08:00
if contour.shape[0] == 2:
continue
category_id = 1
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 1 if text == '###' else 0
2021-04-03 01:03:52 +08:00
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
2021-04-03 01:03:52 +08:00
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
text=text,
2021-04-03 01:03:52 +08:00
segmentation=[contour])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_png_info(gt_file, img_info):
"""Load the information of one ground truth in .png format.
Args:
gt_file (str): The relative path of the ground_truth file for one image
img_info (dict): The dict of only the image information
2021-04-03 01:03:52 +08:00
Returns:
img_info (dict): The dict of the img and annotation information
2021-04-03 01:03:52 +08:00
"""
assert isinstance(gt_file, str)
assert isinstance(img_info, dict)
gt_img = cv2.imread(gt_file, 0)
contours, _ = cv2.findContours(gt_img, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
anno_info = []
for contour in contours:
if contour.shape[0] == 2:
continue
category_id = 1
xy = np.array(contour).flatten().tolist()
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
2021-04-03 01:03:52 +08:00
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[xy])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_img_info(files):
2021-04-03 01:03:52 +08:00
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
2021-04-03 01:03:52 +08:00
Returns:
img_info (dict): The dict of the img and annotation information
2021-04-03 01:03:52 +08:00
"""
assert isinstance(files, tuple)
img_file, gt_file = files
# read imgs while ignoring orientations
2021-04-03 01:03:52 +08:00
img = mmcv.imread(img_file, 'unchanged')
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
# anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
if osp.splitext(gt_file)[1] == '.mat':
img_info = load_mat_info(img_info, gt_file)
elif osp.splitext(gt_file)[1] == '.txt':
img_info = load_txt_info(gt_file, img_info)
2021-04-03 01:03:52 +08:00
else:
raise NotImplementedError
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Convert totaltext annotations to COCO format')
parser.add_argument('root_path', help='Totaltext root path')
2021-04-03 01:03:52 +08:00
parser.add_argument(
'--nproc', default=1, type=int, help='Number of process')
2021-04-03 01:03:52 +08:00
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
img_dir = osp.join(root_path, 'imgs')
gt_dir = osp.join(root_path, 'annotations')
set_name = {}
for split in ['training', 'test']:
2021-04-03 01:03:52 +08:00
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmcv.Timer(
print_tmpl='It takes {}s to convert totaltext annotation'):
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split))
image_infos = collect_annotations(files, nproc=args.nproc)
convert_annotations(image_infos, osp.join(root_path, json_name))
2021-04-03 01:03:52 +08:00
if __name__ == '__main__':
main()