mirror of https://github.com/open-mmlab/mmocr.git
112 lines
3.7 KiB
Python
112 lines
3.7 KiB
Python
|
# Copyright (c) OpenMMLab. All rights reserved.
|
||
|
import os.path as osp
|
||
|
import tempfile
|
||
|
import unittest
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from mmengine.structures import InstanceData
|
||
|
|
||
|
from mmocr.structures import KIEDataSample
|
||
|
from mmocr.utils import bbox2poly
|
||
|
from mmocr.visualization import KIELocalVisualizer
|
||
|
|
||
|
|
||
|
class TestTextKIELocalVisualizer(unittest.TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
h, w = 12, 10
|
||
|
self.image = np.random.randint(0, 256, size=(h, w, 3)).astype('uint8')
|
||
|
edge_labels = torch.rand((5, 5)) > 0.5
|
||
|
# gt_instances
|
||
|
data_sample = KIEDataSample()
|
||
|
gt_instances_data = dict(
|
||
|
bboxes=self._rand_bboxes(5, h, w),
|
||
|
polygons=self._rand_polys(5, h, w),
|
||
|
labels=torch.zeros(5, ),
|
||
|
texts=['text1', 'text2', 'text3', 'text4', 'text5'],
|
||
|
edge_labels=edge_labels)
|
||
|
gt_instances = InstanceData(**gt_instances_data)
|
||
|
data_sample.gt_instances = gt_instances
|
||
|
|
||
|
pred_instances_data = dict(
|
||
|
bboxes=self._rand_bboxes(5, h, w),
|
||
|
labels=torch.zeros(5, ),
|
||
|
scores=torch.rand((5, )),
|
||
|
texts=['text1', 'text2', 'text3', 'text4', 'text5'],
|
||
|
edge_labels=edge_labels)
|
||
|
pred_instances = InstanceData(**pred_instances_data)
|
||
|
data_sample.pred_instances = pred_instances
|
||
|
data_sample = data_sample.numpy()
|
||
|
self.data_sample = data_sample
|
||
|
|
||
|
@staticmethod
|
||
|
def _rand_bboxes(num_boxes, h, w):
|
||
|
cx, cy, bw, bh = torch.rand(num_boxes, 4).T
|
||
|
|
||
|
tl_x = ((cx * w) - (w * bw / 2)).clamp(0, w).unsqueeze(0)
|
||
|
tl_y = ((cy * h) - (h * bh / 2)).clamp(0, h).unsqueeze(0)
|
||
|
br_x = ((cx * w) + (w * bw / 2)).clamp(0, w).unsqueeze(0)
|
||
|
br_y = ((cy * h) + (h * bh / 2)).clamp(0, h).unsqueeze(0)
|
||
|
|
||
|
bboxes = torch.cat([tl_x, tl_y, br_x, br_y], dim=0).T
|
||
|
|
||
|
return bboxes
|
||
|
|
||
|
def _rand_polys(self, num_bboxes, h, w):
|
||
|
bboxes = self._rand_bboxes(num_bboxes, h, w)
|
||
|
bboxes = bboxes.tolist()
|
||
|
polys = [bbox2poly(bbox) for bbox in bboxes]
|
||
|
return polys
|
||
|
|
||
|
def test_add_datasample(self):
|
||
|
image = self.image
|
||
|
h, w, c = image.shape
|
||
|
|
||
|
visualizer = KIELocalVisualizer(is_openset=True)
|
||
|
visualizer.dataset_meta = dict(category=[
|
||
|
dict(id=0, name='bg'),
|
||
|
dict(id=1, name='key'),
|
||
|
dict(id=2, name='value'),
|
||
|
dict(id=3, name='other')
|
||
|
])
|
||
|
visualizer.add_datasample('image', image, self.data_sample)
|
||
|
|
||
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
||
|
# test out
|
||
|
out_file = osp.join(tmp_dir, 'out_file.jpg')
|
||
|
visualizer.add_datasample(
|
||
|
'image',
|
||
|
image,
|
||
|
self.data_sample,
|
||
|
out_file=out_file,
|
||
|
draw_gt=False,
|
||
|
draw_pred=False)
|
||
|
self._assert_image_and_shape(out_file, (h, w, c))
|
||
|
|
||
|
visualizer.add_datasample(
|
||
|
'image', image, self.data_sample, out_file=out_file)
|
||
|
self._assert_image_and_shape(out_file, (h * 2, w * 4, c))
|
||
|
|
||
|
visualizer.add_datasample(
|
||
|
'image',
|
||
|
image,
|
||
|
self.data_sample,
|
||
|
draw_gt=False,
|
||
|
out_file=out_file)
|
||
|
self._assert_image_and_shape(out_file, (h, w * 4, c))
|
||
|
|
||
|
visualizer.add_datasample(
|
||
|
'image',
|
||
|
image,
|
||
|
self.data_sample,
|
||
|
draw_pred=False,
|
||
|
out_file=out_file)
|
||
|
self._assert_image_and_shape(out_file, (h, w * 4, c))
|
||
|
|
||
|
def _assert_image_and_shape(self, out_file, out_shape):
|
||
|
self.assertTrue(osp.exists(out_file))
|
||
|
drawn_img = cv2.imread(out_file)
|
||
|
self.assertTrue(drawn_img.shape == out_shape)
|