mmocr/configs/kie/sdmgr/sdmgr_novisual_60e_wildrece...

100 lines
2.7 KiB
Python
Raw Normal View History

dataset_type = 'KIEDataset'
data_root = 'data/wildreceipt'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
max_scale, min_scale = 1024, 512
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='KIEFormatBundle'),
dict(
type='Collect',
keys=['img', 'relations', 'texts', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='KIEFormatBundle'),
dict(type='Collect', keys=['img', 'relations', 'texts', 'gt_bboxes'])
]
vocab_file = 'dict.txt'
class_file = 'class_list.txt'
data = dict(
samples_per_gpu=4,
workers_per_gpu=0,
train=dict(
type=dataset_type,
ann_file='train.txt',
pipeline=train_pipeline,
data_root=data_root,
vocab_file=vocab_file,
class_file=class_file),
val=dict(
type=dataset_type,
ann_file='test.txt',
pipeline=test_pipeline,
data_root=data_root,
vocab_file=vocab_file,
class_file=class_file),
test=dict(
type=dataset_type,
ann_file='test.txt',
pipeline=test_pipeline,
data_root=data_root,
vocab_file=vocab_file,
class_file=class_file))
evaluation = dict(
interval=1,
metric='macro_f1',
metric_options=dict(
macro_f1=dict(
ignores=[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25])))
model = dict(
type='SDMGR',
backbone=dict(type='UNet', base_channels=16),
bbox_head=dict(
type='SDMGRHead', visual_dim=16, num_chars=92, num_classes=26),
visual_modality=False,
train_cfg=None,
test_cfg=None)
optimizer = dict(type='Adam', weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1,
warmup_ratio=1,
step=[40, 50])
total_epochs = 60
checkpoint_config = dict(interval=1)
log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook'),
# dict(
# type='PaviLoggerHook',
# add_last_ckpt=True,
# interval=5,
# init_kwargs=dict(project='kie')),
])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]