mirror of https://github.com/open-mmlab/mmocr.git
100 lines
2.7 KiB
Python
100 lines
2.7 KiB
Python
|
dataset_type = 'KIEDataset'
|
||
|
data_root = 'data/wildreceipt'
|
||
|
img_norm_cfg = dict(
|
||
|
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
|
||
|
max_scale, min_scale = 1024, 512
|
||
|
|
||
|
train_pipeline = [
|
||
|
dict(type='LoadImageFromFile'),
|
||
|
dict(type='LoadAnnotations'),
|
||
|
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True),
|
||
|
dict(type='RandomFlip', flip_ratio=0.),
|
||
|
dict(type='Normalize', **img_norm_cfg),
|
||
|
dict(type='Pad', size_divisor=32),
|
||
|
dict(type='KIEFormatBundle'),
|
||
|
dict(
|
||
|
type='Collect',
|
||
|
keys=['img', 'relations', 'texts', 'gt_bboxes', 'gt_labels'])
|
||
|
]
|
||
|
test_pipeline = [
|
||
|
dict(type='LoadImageFromFile'),
|
||
|
dict(type='LoadAnnotations'),
|
||
|
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True),
|
||
|
dict(type='RandomFlip', flip_ratio=0.),
|
||
|
dict(type='Normalize', **img_norm_cfg),
|
||
|
dict(type='Pad', size_divisor=32),
|
||
|
dict(type='KIEFormatBundle'),
|
||
|
dict(type='Collect', keys=['img', 'relations', 'texts', 'gt_bboxes'])
|
||
|
]
|
||
|
|
||
|
vocab_file = 'dict.txt'
|
||
|
class_file = 'class_list.txt'
|
||
|
|
||
|
data = dict(
|
||
|
samples_per_gpu=4,
|
||
|
workers_per_gpu=0,
|
||
|
train=dict(
|
||
|
type=dataset_type,
|
||
|
ann_file='train.txt',
|
||
|
pipeline=train_pipeline,
|
||
|
data_root=data_root,
|
||
|
vocab_file=vocab_file,
|
||
|
class_file=class_file),
|
||
|
val=dict(
|
||
|
type=dataset_type,
|
||
|
ann_file='test.txt',
|
||
|
pipeline=test_pipeline,
|
||
|
data_root=data_root,
|
||
|
vocab_file=vocab_file,
|
||
|
class_file=class_file),
|
||
|
test=dict(
|
||
|
type=dataset_type,
|
||
|
ann_file='test.txt',
|
||
|
pipeline=test_pipeline,
|
||
|
data_root=data_root,
|
||
|
vocab_file=vocab_file,
|
||
|
class_file=class_file))
|
||
|
|
||
|
evaluation = dict(
|
||
|
interval=1,
|
||
|
metric='macro_f1',
|
||
|
metric_options=dict(
|
||
|
macro_f1=dict(
|
||
|
ignores=[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25])))
|
||
|
|
||
|
model = dict(
|
||
|
type='SDMGR',
|
||
|
backbone=dict(type='UNet', base_channels=16),
|
||
|
bbox_head=dict(
|
||
|
type='SDMGRHead', visual_dim=16, num_chars=92, num_classes=26),
|
||
|
visual_modality=False,
|
||
|
train_cfg=None,
|
||
|
test_cfg=None)
|
||
|
|
||
|
optimizer = dict(type='Adam', weight_decay=0.0001)
|
||
|
optimizer_config = dict(grad_clip=None)
|
||
|
lr_config = dict(
|
||
|
policy='step',
|
||
|
warmup='linear',
|
||
|
warmup_iters=1,
|
||
|
warmup_ratio=1,
|
||
|
step=[40, 50])
|
||
|
total_epochs = 60
|
||
|
|
||
|
checkpoint_config = dict(interval=1)
|
||
|
log_config = dict(
|
||
|
interval=50,
|
||
|
hooks=[
|
||
|
dict(type='TextLoggerHook'),
|
||
|
# dict(
|
||
|
# type='PaviLoggerHook',
|
||
|
# add_last_ckpt=True,
|
||
|
# interval=5,
|
||
|
# init_kwargs=dict(project='kie')),
|
||
|
])
|
||
|
dist_params = dict(backend='nccl')
|
||
|
log_level = 'INFO'
|
||
|
load_from = None
|
||
|
resume_from = None
|
||
|
workflow = [('train', 1)]
|