mmocr/tools/data/textdet/totaltext_converter.py

313 lines
9.2 KiB
Python
Raw Normal View History

2021-04-03 01:03:52 +08:00
import argparse
import glob
import os.path as osp
from functools import partial
import cv2
import mmcv
import numpy as np
import scipy.io as scio
from shapely.geometry import Polygon
from tools.data_converter.common import convert_annotations, is_not_png
from mmocr.utils import drop_orientation
2021-04-03 01:03:52 +08:00
def collect_files(img_dir, gt_dir, split):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir(str): The image directory
gt_dir(str): The groundtruth directory
split(str): The split of dataset. Namely: training or test
Returns:
files(list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
# suffixes = ['.png']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
imgs_list = [
drop_orientation(f) if is_not_png(f) else f for f in imgs_list
2021-04-03 01:03:52 +08:00
]
files = []
if split == 'training':
for img_file in imgs_list:
gt_file = gt_dir + '/gt_' + osp.splitext(
osp.basename(img_file))[0] + '.mat'
# gt_file = gt_dir + '/' + osp.splitext(
# osp.basename(img_file))[0] + '.png'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
elif split == 'test':
for img_file in imgs_list:
gt_file = gt_dir + '/poly_gt_' + osp.splitext(
osp.basename(img_file))[0] + '.mat'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, split, nproc=1):
"""Collect the annotation information.
Args:
files(list): The list of tuples (image_file, groundtruth_file)
split(str): The split of dataset. Namely: training or test
nproc(int): The number of process to collect annotations
Returns:
images(list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(split, str)
assert isinstance(nproc, int)
load_img_info_with_split = partial(load_img_info, split=split)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info_with_split, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info_with_split, files)
return images
def get_contours(gt_path, split):
"""Get the contours and words for each ground_truth file.
Args:
gt_path(str): The relative path of the ground_truth mat file
split(str): The split of dataset: training or test
Returns:
contours(list[lists]): A list of lists of contours
for the text instances
words(list[list]): A list of lists of words (string)
for the text instances
"""
assert isinstance(gt_path, str)
assert isinstance(split, str)
contours = []
words = []
data = scio.loadmat(gt_path)
if split == 'training':
data_polygt = data['gt']
elif split == 'test':
data_polygt = data['polygt']
for i, lines in enumerate(data_polygt):
X = np.array(lines[1])
Y = np.array(lines[3])
point_num = len(X[0])
word = lines[4]
if len(word) == 0:
word = '???'
else:
word = word[0]
if word == '#':
word = '###'
continue
words.append(word)
arr = np.concatenate([X, Y]).T
contour = []
for i in range(point_num):
contour.append(arr[i][0])
contour.append(arr[i][1])
contours.append(np.asarray(contour))
return contours, words
def load_mat_info(img_info, gt_file, split):
"""Load the information of one ground truth in .mat format.
Args:
img_info(dict): The dict of only the image information
gt_file(str): The relative path of the ground_truth mat
file for one image
split(str): The split of dataset: training or test
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(img_info, dict)
assert isinstance(gt_file, str)
assert isinstance(split, str)
contours, words = get_contours(gt_file, split)
anno_info = []
for contour in contours:
if contour.shape[0] == 2:
continue
category_id = 1
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
2021-04-03 01:03:52 +08:00
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[contour])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_png_info(gt_file, img_info):
"""Load the information of one ground truth in .png format.
Args:
gt_file(str): The relative path of the ground_truth file for one image
img_info(dict): The dict of only the image information
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(gt_file, str)
assert isinstance(img_info, dict)
gt_img = cv2.imread(gt_file, 0)
contours, _ = cv2.findContours(gt_img, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
anno_info = []
for contour in contours:
if contour.shape[0] == 2:
continue
category_id = 1
xy = np.array(contour).flatten().tolist()
coordinates = np.array(contour).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
2021-04-03 01:03:52 +08:00
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[xy])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_img_info(files, split):
"""Load the information of one image.
Args:
files(tuple): The tuple of (img_file, groundtruth_file)
split(str): The split of dataset: training or test
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
assert isinstance(split, str)
img_file, gt_file = files
# read imgs with ignoring orientations
2021-04-03 01:03:52 +08:00
img = mmcv.imread(img_file, 'unchanged')
# read imgs with orientations as dataloader does when training and testing
2021-04-03 01:03:52 +08:00
img_color = mmcv.imread(img_file, 'color')
# make sure imgs have no orientation info, or annotation gt is wrong.
2021-04-03 01:03:52 +08:00
assert img.shape[0:2] == img_color.shape[0:2]
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
# anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
if split == 'training':
img_info = load_mat_info(img_info, gt_file, split)
elif split == 'test':
img_info = load_mat_info(img_info, gt_file, split)
else:
raise NotImplementedError
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Convert totaltext annotations to COCO format')
parser.add_argument('root_path', help='totaltext root path')
parser.add_argument('-o', '--out-dir', help='output path')
parser.add_argument(
'--split-list',
nargs='+',
help='a list of splits. e.g., "--split_list training test"')
parser.add_argument(
'--nproc', default=1, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
out_dir = args.out_dir if args.out_dir else root_path
mmcv.mkdir_or_exist(out_dir)
img_dir = osp.join(root_path, 'imgs')
gt_dir = osp.join(root_path, 'annotations')
set_name = {}
for split in args.split_list:
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmcv.Timer(
print_tmpl='It takes {}s to convert totaltext annotation'):
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split), split)
image_infos = collect_annotations(files, split, nproc=args.nproc)
convert_annotations(image_infos, osp.join(out_dir, json_name))
if __name__ == '__main__':
main()