mmocr/old_tests/test_dataset/test_transforms.py

75 lines
2.3 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2021-04-03 01:03:52 +08:00
import unittest.mock as mock
import numpy as np
from mmdet.core import PolygonMasks
2021-04-03 01:03:52 +08:00
import mmocr.datasets.pipelines.transforms as transforms
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_scale_aspect_jitter(mock_random):
img_scale = [(3000, 1000)] # unused
ratio_range = (0.5, 1.5)
aspect_ratio_range = (1, 1)
multiscale_mode = 'value'
long_size_bound = 2000
short_size_bound = 640
resize_type = 'long_short_bound'
keep_ratio = False
jitter = transforms.ScaleAspectJitter(
img_scale=img_scale,
ratio_range=ratio_range,
aspect_ratio_range=aspect_ratio_range,
multiscale_mode=multiscale_mode,
long_size_bound=long_size_bound,
short_size_bound=short_size_bound,
resize_type=resize_type,
keep_ratio=keep_ratio)
mock_random.side_effect = [0.5]
# test sample_from_range
result = jitter.sample_from_range([100, 200])
assert result == 150
# test _random_scale
results = {}
results['img'] = np.zeros((4000, 1000))
mock_random.side_effect = [0.5, 1]
jitter._random_scale(results)
# scale1 0.5 scale2=1 scale =0.5 650/1000, w, h
# print(results['scale'])
assert results['scale'] == (650, 2600)
@mock.patch('%s.transforms.np.random.random_sample' % __name__)
def test_square_resize_pad(mock_sample):
results = {}
img = np.zeros((15, 30, 3))
polygon = np.array([10., 5., 20., 5., 20., 10., 10., 10.])
poly_masks = PolygonMasks([[polygon]], 15, 30)
results['img'] = img
results['gt_masks'] = poly_masks
results['mask_fields'] = ['gt_masks']
srp = transforms.SquareResizePad(target_size=40, pad_ratio=0.5)
# test resize with padding
mock_sample.side_effect = [0.]
output = srp(results)
target = 4. / 3 * polygon
target[1::2] += 10.
assert np.allclose(output['gt_masks'].masks[0][0], target)
assert output['img'].shape == (40, 40, 3)
# test resize to square without padding
results['img'] = img
results['gt_masks'] = poly_masks
mock_sample.side_effect = [1.]
output = srp(results)
target = polygon.copy()
target[::2] *= 4. / 3
target[1::2] *= 8. / 3
assert np.allclose(output['gt_masks'].masks[0][0], target)
assert output['img'].shape == (40, 40, 3)