mmocr/tools/data/textdet/ctw1500_converter.py

335 lines
10 KiB
Python
Raw Normal View History

2021-04-03 01:03:52 +08:00
import argparse
import glob
import os
import os.path as osp
import xml.etree.ElementTree as ET
from functools import partial
import mmcv
import numpy as np
from shapely.geometry import Polygon
def check_ignore_orientation(img_file):
"""Check if the image has orientation information.
If yes, ignore it by converting the image format to png, otherwise return
the original filename.
Args:
img_file(str): The image path
Returns:
The converted image filename with proper postfix
"""
assert isinstance(img_file, str)
assert img_file
# read imgs with ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
# read imgs with orientations as dataloader does when training and testing
img_color = mmcv.imread(img_file, 'color')
# make sure imgs have no orientations info, or annotation gt is wrong.
if img.shape[:2] == img_color.shape[:2]:
return img_file
else:
target_file = osp.splitext(img_file)[0] + '.png'
# read img with ignoring orientation information
img = mmcv.imread(img_file, 'unchanged')
mmcv.imwrite(img, target_file)
os.remove(img_file)
print(
f'{img_file} has orientation info. Ingore it by converting to png')
return target_file
def is_not_png(img_file):
"""Check img_file is not png image.
Args:
img_file(str): The input image file name
Returns:
The bool flag indicating whether it is not png
"""
assert isinstance(img_file, str)
assert img_file
suffix = osp.splitext(img_file)[1]
return (suffix not in ['.PNG', '.png'])
def collect_files(img_dir, gt_dir, split):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir(str): The image directory
gt_dir(str): The groundtruth directory
split(str): The split of dataset. Namely: training or test
Returns:
files(list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
# suffixes = ['.png']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
imgs_list = [
check_ignore_orientation(f) if is_not_png(f) else f for f in imgs_list
]
files = []
if split == 'training':
for img_file in imgs_list:
gt_file = gt_dir + '/' + osp.splitext(
osp.basename(img_file))[0] + '.xml'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
elif split == 'test':
for img_file in imgs_list:
gt_file = gt_dir + '/000' + osp.splitext(
osp.basename(img_file))[0] + '.txt'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, split, nproc=1):
"""Collect the annotation information.
Args:
files(list): The list of tuples (image_file, groundtruth_file)
split(str): The split of dataset. Namely: training or test
nproc(int): The number of process to collect annotations
Returns:
images(list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(split, str)
assert isinstance(nproc, int)
load_img_info_with_split = partial(load_img_info, split=split)
if nproc > 1:
images = mmcv.track_parallel_progress(
load_img_info_with_split, files, nproc=nproc)
else:
images = mmcv.track_progress(load_img_info_with_split, files)
return images
def load_txt_info(gt_file, img_info):
with open(gt_file) as f:
gt_list = f.readlines()
anno_info = []
for line in gt_list:
# each line has one ploygen (n vetices), and one text.
# e.g., 695,885,866,888,867,1146,696,1143,####Latin 9
line = line.strip()
strs = line.split(',')
category_id = 1
assert strs[28][0] == '#'
xy = [int(x) for x in strs[0:28]]
assert len(xy) == 28
coordinates = np.array(xy).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
area = polygon.area
# convert to COCO style XYWH format
minx, miny, maxx, maxy = polygon.bounds
bbox = [minx, miny, maxx - minx, maxy - miny]
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[xy])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_xml_info(gt_file, img_info):
obj = ET.parse(gt_file)
anno_info = []
for image in obj.getroot(): # image
for box in image: # image
h = box.attrib['height']
w = box.attrib['width']
x = box.attrib['left']
y = box.attrib['top']
# label = box[0].text
segs = box[1].text
pts = segs.strip().split(',')
pts = [int(x) for x in pts]
assert len(pts) == 28
# pts = []
# for iter in range(2,len(box)):
# pts.extend([int(box[iter].attrib['x']),
# int(box[iter].attrib['y'])])
iscrowd = 0
category_id = 1
bbox = [int(x), int(y), int(w), int(h)]
coordinates = np.array(pts).reshape(-1, 2)
polygon = Polygon(coordinates)
area = polygon.area
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[pts])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def load_img_info(files, split):
"""Load the information of one image.
Args:
files(tuple): The tuple of (img_file, groundtruth_file)
split(str): The split of dataset: training or test
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
assert isinstance(split, str)
img_file, gt_file = files
# read imgs with ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
# read imgs with orientations as dataloader does when training and testing
img_color = mmcv.imread(img_file, 'color')
# make sure imgs have no orientations info, or annotation gt is wrong.
assert img.shape[0:2] == img_color.shape[0:2]
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
# anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
if split == 'training':
img_info = load_xml_info(gt_file, img_info)
elif split == 'test':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def convert_annotations(image_infos, out_json_name):
"""Convert the annotation into coco style.
Args:
image_infos(list): The list of image information dicts
out_json_name(str): The output json filename
Returns:
out_json(dict): The coco style dict
"""
assert isinstance(image_infos, list)
assert isinstance(out_json_name, str)
assert out_json_name
out_json = dict()
img_id = 0
ann_id = 0
out_json['images'] = []
out_json['categories'] = []
out_json['annotations'] = []
for image_info in image_infos:
image_info['id'] = img_id
anno_infos = image_info.pop('anno_info')
out_json['images'].append(image_info)
for anno_info in anno_infos:
anno_info['image_id'] = img_id
anno_info['id'] = ann_id
out_json['annotations'].append(anno_info)
ann_id += 1
# if image_info['file_name'].find('png'):
# img = mmcv.imread('data/ctw1500/imgs/'+
# image_info['file_name'], 'color')
# show_img_boundary(img, anno_info['segmentation'] )
img_id += 1
print(img_id)
cat = dict(id=1, name='text')
out_json['categories'].append(cat)
if len(out_json['annotations']) == 0:
out_json.pop('annotations')
mmcv.dump(out_json, out_json_name)
return out_json
def parse_args():
parser = argparse.ArgumentParser(
description='Convert ctw1500 annotations to COCO format')
parser.add_argument('root_path', help='ctw1500 root path')
parser.add_argument('-o', '--out-dir', help='output path')
parser.add_argument(
'--split-list',
nargs='+',
help='a list of splits. e.g., "--split_list training test"')
parser.add_argument(
'--nproc', default=1, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
out_dir = args.out_dir if args.out_dir else root_path
mmcv.mkdir_or_exist(out_dir)
img_dir = osp.join(root_path, 'imgs')
gt_dir = osp.join(root_path, 'annotations')
set_name = {}
for split in args.split_list:
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmcv.Timer(print_tmpl='It takes {}s to convert icdar annotation'):
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split), split)
image_infos = collect_annotations(files, split, nproc=args.nproc)
convert_annotations(image_infos, osp.join(out_dir, json_name))
if __name__ == '__main__':
main()