mmocr/tools/dataset_converters/textdet/icdar_converter.py

186 lines
5.7 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2021-04-03 01:03:52 +08:00
import argparse
import glob
import os.path as osp
from functools import partial
import mmcv
import mmengine
2021-04-03 01:03:52 +08:00
import numpy as np
from shapely.geometry import Polygon
from mmocr.utils import dump_ocr_data, list_from_file
2021-04-03 01:03:52 +08:00
def collect_files(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir(str): The image directory
gt_dir(str): The groundtruth directory
Returns:
files(list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
# note that we handle png and jpg only. Pls convert others such as gif to
# jpg or png offline
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG']
imgs_list = []
for suffix in suffixes:
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix)))
files = []
for img_file in imgs_list:
gt_file = gt_dir + '/gt_' + osp.splitext(
osp.basename(img_file))[0] + '.txt'
files.append((img_file, gt_file))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, dataset, nproc=1):
"""Collect the annotation information.
Args:
files(list): The list of tuples (image_file, groundtruth_file)
dataset(str): The dataset name, icdar2015 or icdar2017
nproc(int): The number of process to collect annotations
Returns:
images(list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(dataset, str)
assert dataset
assert isinstance(nproc, int)
load_img_info_with_dataset = partial(load_img_info, dataset=dataset)
if nproc > 1:
images = mmengine.track_parallel_progress(
2021-04-03 01:03:52 +08:00
load_img_info_with_dataset, files, nproc=nproc)
else:
images = mmengine.track_progress(load_img_info_with_dataset, files)
2021-04-03 01:03:52 +08:00
return images
def load_img_info(files, dataset):
"""Load the information of one image.
Args:
files(tuple): The tuple of (img_file, groundtruth_file)
dataset(str): Dataset name, icdar2015 or icdar2017
Returns:
img_info(dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
assert isinstance(dataset, str)
assert dataset
img_file, gt_file = files
# read imgs with ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
if dataset == 'icdar2017':
gt_list = list_from_file(gt_file)
2021-04-03 01:03:52 +08:00
elif dataset == 'icdar2015':
gt_list = list_from_file(gt_file, encoding='utf-8-sig')
2021-04-03 01:03:52 +08:00
else:
raise NotImplementedError(f'Not support {dataset}')
anno_info = []
for line in gt_list:
# each line has one ploygen (4 vetices), and others.
# e.g., 695,885,866,888,867,1146,696,1143,Latin,9
line = line.strip()
strs = line.split(',')
category_id = 1
xy = [int(x) for x in strs[0:8]]
coordinates = np.array(xy).reshape(-1, 2)
polygon = Polygon(coordinates)
iscrowd = 0
# set iscrowd to 1 to ignore 1.
if (dataset == 'icdar2015'
and strs[8] == '###') or (dataset == 'icdar2017'
and strs[9] == '###'):
iscrowd = 1
print('ignore text')
area = polygon.area
# convert to COCO style XYWH format
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
2021-04-03 01:03:52 +08:00
anno = dict(
iscrowd=iscrowd,
category_id=category_id,
bbox=bbox,
area=area,
segmentation=[xy])
anno_info.append(anno)
split_name = osp.basename(osp.dirname(img_file))
img_info = dict(
# remove img_prefix for filename
file_name=osp.join(split_name, osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
anno_info=anno_info,
segm_file=osp.join(split_name, osp.basename(gt_file)))
return img_info
def parse_args():
parser = argparse.ArgumentParser(
description='Convert Icdar2015 or Icdar2017 annotations to COCO format'
)
parser.add_argument('icdar_path', help='icdar root path')
parser.add_argument('-o', '--out-dir', help='output path')
2021-06-01 21:59:40 +08:00
parser.add_argument(
'-d', '--dataset', required=True, help='icdar2017 or icdar2015')
2021-04-03 01:03:52 +08:00
parser.add_argument(
'--split-list',
nargs='+',
2021-06-01 21:59:40 +08:00
help='a list of splits. e.g., "--split-list training test"')
2021-04-03 01:03:52 +08:00
parser.add_argument(
'--nproc', default=1, type=int, help='number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
icdar_path = args.icdar_path
out_dir = args.out_dir if args.out_dir else icdar_path
mmengine.mkdir_or_exist(out_dir)
2021-04-03 01:03:52 +08:00
img_dir = osp.join(icdar_path, 'imgs')
gt_dir = osp.join(icdar_path, 'annotations')
set_name = {}
for split in args.split_list:
set_name.update({split: 'instances_' + split + '.json'})
assert osp.exists(osp.join(img_dir, split))
for split, json_name in set_name.items():
print(f'Converting {split} into {json_name}')
with mmengine.Timer(
print_tmpl='It takes {}s to convert icdar annotation'):
2021-04-03 01:03:52 +08:00
files = collect_files(
osp.join(img_dir, split), osp.join(gt_dir, split))
image_infos = collect_annotations(
files, args.dataset, nproc=args.nproc)
dump_ocr_data(image_infos, osp.join(out_dir, json_name), 'textdet')
2021-04-03 01:03:52 +08:00
if __name__ == '__main__':
main()