mmocr/old_tests/test_models/test_ocr_encoder.py

43 lines
1.2 KiB
Python
Raw Normal View History

# Copyright (c) OpenMMLab. All rights reserved.
2021-04-02 23:54:57 +08:00
import torch
from mmocr.models.textrecog.encoders import (ABIVisionModel, BaseEncoder,
2022-06-24 03:22:56 +00:00
NRTREncoder, TransformerEncoder)
2021-04-02 23:54:57 +08:00
def test_nrtr_encoder():
tf_encoder = NRTREncoder()
2021-04-02 23:54:57 +08:00
tf_encoder.init_weights()
tf_encoder.train()
feat = torch.randn(1, 512, 1, 25)
2021-04-02 23:54:57 +08:00
out_enc = tf_encoder(feat)
print('hello', out_enc.size())
assert out_enc.shape == torch.Size([1, 25, 512])
2021-04-02 23:54:57 +08:00
def test_base_encoder():
encoder = BaseEncoder()
encoder.init_weights()
encoder.train()
feat = torch.randn(1, 256, 4, 40)
out_enc = encoder(feat)
assert out_enc.shape == torch.Size([1, 256, 4, 40])
def test_transformer_encoder():
model = TransformerEncoder()
x = torch.randn(10, 512, 8, 32)
assert model(x).shape == torch.Size([10, 512, 8, 32])
def test_abi_vision_model():
model = ABIVisionModel(
decoder=dict(type='ABIVisionDecoder', max_seq_len=10, use_result=None))
x = torch.randn(1, 512, 8, 32)
result = model(x)
assert result['feature'].shape == torch.Size([1, 10, 512])
assert result['logits'].shape == torch.Size([1, 10, 90])
assert result['attn_scores'].shape == torch.Size([1, 10, 8, 32])