2021-04-03 01:03:52 +08:00
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
|
|
|
|
|
|
|
|
def test_db_boxes_from_bitmaps():
|
|
|
|
"""Test the boxes_from_bitmaps function in db_decoder."""
|
|
|
|
from mmocr.models.textdet.postprocess.wrapper import db_decode
|
|
|
|
pred = np.array([[[0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0],
|
|
|
|
[0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0],
|
|
|
|
[0.8, 0.8, 0.8, 0.8, 0]]])
|
|
|
|
preds = torch.FloatTensor(pred).requires_grad_(True)
|
|
|
|
|
|
|
|
boxes = db_decode(preds, text_repr_type='quad', min_text_width=0)
|
|
|
|
assert len(boxes) == 1
|
2021-05-14 21:37:04 +08:00
|
|
|
|
|
|
|
|
|
|
|
def test_fcenet_decode():
|
|
|
|
from mmocr.models.textdet.postprocess.wrapper import fcenet_decode
|
|
|
|
|
|
|
|
k = 5
|
|
|
|
preds = []
|
|
|
|
preds.append(torch.randn(1, 4, 40, 40))
|
|
|
|
preds.append(torch.randn(1, 4 * k + 2, 40, 40))
|
|
|
|
|
|
|
|
boundaries = fcenet_decode(
|
|
|
|
preds=preds, fourier_degree=k, reconstr_points=50, scale=1)
|
|
|
|
|
|
|
|
assert isinstance(boundaries, list)
|