mmocr/tools/train.py

207 lines
7.5 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# Copyright (c) OpenMMLab. All rights reserved.
2021-04-03 01:03:52 +08:00
import argparse
import copy
import os
import os.path as osp
import time
import warnings
import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.runner import get_dist_info, init_dist, set_random_seed
2021-04-03 01:03:52 +08:00
from mmcv.utils import get_git_hash
from mmocr import __version__
from mmocr.apis import init_random_seed, train_detector
2021-04-03 01:03:52 +08:00
from mmocr.datasets import build_dataset
from mmocr.models import build_detector
from mmocr.utils import collect_env, get_root_logger, is_2dlist
2021-04-03 01:03:52 +08:00
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector.')
parser.add_argument('config', help='Train config file path.')
parser.add_argument('--work-dir', help='The dir to save logs and models.')
Ner task (#148) * update ner standard code format * add pytest * fix pre-commit * Annotate the dataset section * fix pre-commit for dataset * rm big files and add comments in dataset * rename configs for ner task * minor changes if metric * Note modification * fix pre-commit * detail modification * rm transform * rm magic number * fix warnings in pylint * fix pre-commit * correct help info * rename model files * rename err fixed * 428_tag * Adjust to more general pipline * update unit test rate * update * Unit test coverage over 90% and add Readme * modify details * fix precommit * update * fix pre-commit * update * update * update * update result * update readme * update baseline config * update config and small minor changes * minor changes in readme and etc. * back to original * update toy config * upload model and log * fix pytest * Modify the notes. * fix readme * Delete Chinese punctuation * add demo and fix some logic and naming problems * add To_tensor transformer for ner and load pretrained model in config * delete extra lines * split ner loss to MaskedCrossEntropyLoss and MaskedFocalLoss * update config * fix err * updata * modify noqa * update new model report * fix err in ner demo * Update ner_dataset.py * Update test_ner_dataset.py * Update ner_dataset.py * Update ner_transforms.py * rm toy config and data * add comment * add empty * fix conflict * fix precommit * fix pytest * fix pytest err * Update ner_dataset.py * change dataset name to cluener2020 * move the postprocess in metric to convertor * rm __init__ etc. * precommit * add discription in loss * add auto download * add http * update * remove some 'issert' * replace unsqueeze * update config * update doc and bert.py * update * update demo code Co-authored-by: weihuaqiang <weihuaqiang@sensetime.com> Co-authored-by: Hongbin Sun <hongbin306@gmail.com>
2021-05-18 11:33:51 +08:00
parser.add_argument(
'--load-from', help='The checkpoint file to load from.')
2021-04-03 01:03:52 +08:00
parser.add_argument(
'--resume-from', help='The checkpoint file to resume from.')
parser.add_argument(
'--no-validate',
action='store_true',
help='Whether not to evaluate the checkpoint during training.')
group_gpus = parser.add_mutually_exclusive_group()
group_gpus.add_argument(
'--gpus',
type=int,
help='Number of gpus to use '
'(only applicable to non-distributed training).')
group_gpus.add_argument(
'--gpu-ids',
type=int,
nargs='+',
help='ids of gpus to use '
'(only applicable to non-distributed training).')
parser.add_argument('--seed', type=int, default=None, help='Random seed.')
parser.add_argument(
'--deterministic',
action='store_true',
help='Whether to set deterministic options for CUDNN backend.')
parser.add_argument(
'--options',
nargs='+',
action=DictAction,
help='Override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file (deprecate), '
'change to --cfg-options instead.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='Override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be of the form of either '
'key="[a,b]" or key=a,b .The argument also allows nested list/tuple '
'values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks '
'are necessary and that no white space is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='Options for job launcher.')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
if args.options and args.cfg_options:
raise ValueError(
'--options and --cfg-options cannot be both '
'specified, --options is deprecated in favor of --cfg-options')
if args.options:
warnings.warn('--options is deprecated in favor of --cfg-options')
args.cfg_options = args.options
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
Ner task (#148) * update ner standard code format * add pytest * fix pre-commit * Annotate the dataset section * fix pre-commit for dataset * rm big files and add comments in dataset * rename configs for ner task * minor changes if metric * Note modification * fix pre-commit * detail modification * rm transform * rm magic number * fix warnings in pylint * fix pre-commit * correct help info * rename model files * rename err fixed * 428_tag * Adjust to more general pipline * update unit test rate * update * Unit test coverage over 90% and add Readme * modify details * fix precommit * update * fix pre-commit * update * update * update * update result * update readme * update baseline config * update config and small minor changes * minor changes in readme and etc. * back to original * update toy config * upload model and log * fix pytest * Modify the notes. * fix readme * Delete Chinese punctuation * add demo and fix some logic and naming problems * add To_tensor transformer for ner and load pretrained model in config * delete extra lines * split ner loss to MaskedCrossEntropyLoss and MaskedFocalLoss * update config * fix err * updata * modify noqa * update new model report * fix err in ner demo * Update ner_dataset.py * Update test_ner_dataset.py * Update ner_dataset.py * Update ner_transforms.py * rm toy config and data * add comment * add empty * fix conflict * fix precommit * fix pytest * fix pytest err * Update ner_dataset.py * change dataset name to cluener2020 * move the postprocess in metric to convertor * rm __init__ etc. * precommit * add discription in loss * add auto download * add http * update * remove some 'issert' * replace unsqueeze * update config * update doc and bert.py * update * update demo code Co-authored-by: weihuaqiang <weihuaqiang@sensetime.com> Co-authored-by: Hongbin Sun <hongbin306@gmail.com>
2021-05-18 11:33:51 +08:00
if args.load_from is not None:
cfg.load_from = args.load_from
2021-04-03 01:03:52 +08:00
if args.resume_from is not None:
cfg.resume_from = args.resume_from
if args.gpu_ids is not None:
cfg.gpu_ids = args.gpu_ids
else:
cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# re-set gpu_ids with distributed training mode
_, world_size = get_dist_info()
cfg.gpu_ids = range(world_size)
# create work_dir
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
# dump config
cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config)))
# init the logger before other steps
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)
# init the meta dict to record some important information such as
# environment info and seed, which will be logged
meta = dict()
# log env info
env_info_dict = collect_env()
env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
dash_line = '-' * 60 + '\n'
logger.info('Environment info:\n' + dash_line + env_info + '\n' +
dash_line)
meta['env_info'] = env_info
meta['config'] = cfg.pretty_text
# log some basic info
logger.info(f'Distributed training: {distributed}')
logger.info(f'Config:\n{cfg.pretty_text}')
# set random seeds
seed = init_random_seed(args.seed)
logger.info(f'Set random seed to {seed}, '
f'deterministic: {args.deterministic}')
set_random_seed(seed, deterministic=args.deterministic)
cfg.seed = seed
meta['seed'] = seed
2021-04-03 01:03:52 +08:00
meta['exp_name'] = osp.basename(args.config)
model = build_detector(
cfg.model,
train_cfg=cfg.get('train_cfg'),
test_cfg=cfg.get('test_cfg'))
model.init_weights()
2021-04-03 01:03:52 +08:00
datasets = [build_dataset(cfg.data.train)]
if len(cfg.workflow) == 2:
val_dataset = copy.deepcopy(cfg.data.val)
if cfg.data.train.get('pipeline', None) is None:
if is_2dlist(cfg.data.train.datasets):
train_pipeline = cfg.data.train.datasets[0][0].pipeline
else:
train_pipeline = cfg.data.train.datasets[0].pipeline
elif is_2dlist(cfg.data.train.pipeline):
train_pipeline = cfg.data.train.pipeline[0]
else:
train_pipeline = cfg.data.train.pipeline
if val_dataset['type'] in ['ConcatDataset', 'UniformConcatDataset']:
for dataset in val_dataset['datasets']:
dataset.pipeline = train_pipeline
else:
val_dataset.pipeline = train_pipeline
2021-04-03 01:03:52 +08:00
datasets.append(build_dataset(val_dataset))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmocr_version=__version__ + get_git_hash()[:7],
2021-04-03 01:03:52 +08:00
CLASSES=datasets[0].CLASSES)
# add an attribute for visualization convenience
model.CLASSES = datasets[0].CLASSES
train_detector(
model,
datasets,
cfg,
distributed=distributed,
validate=(not args.no_validate),
timestamp=timestamp,
meta=meta)
if __name__ == '__main__':
main()