mirror of https://github.com/open-mmlab/mmocr.git
[Update] update config
parent
301eb7b783
commit
1212ae89cc
|
@ -1,9 +1,8 @@
|
|||
optim_wrapper = dict(
|
||||
type='OptimWrapper', optimizer=dict(type='Adadelta', lr=1.0))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=5)
|
||||
val_cfg = dict(interval=1)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=5, val_interval=1)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning rate
|
||||
param_scheduler = [
|
||||
dict(type='ConstantLR', factor=1.0),
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
# optimizer
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=1e-3))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=600)
|
||||
val_cfg = dict(interval=20)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=600, val_interval=20)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning rate
|
||||
param_scheduler = [
|
||||
dict(type='PolyLR', power=0.9, end=600),
|
||||
|
|
|
@ -1,10 +1,9 @@
|
|||
# optimizer
|
||||
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=4e-4))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=12)
|
||||
val_cfg = dict(interval=1)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', end=100, by_epoch=False),
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
# optimizer
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=1e-4))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=20)
|
||||
val_cfg = dict(interval=1)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', end=1, start_factor=0.001),
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
# optimizer
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=1e-3))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=5)
|
||||
val_cfg = dict(interval=1)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=5, val_interval=1)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='MultiStepLR', milestones=[3, 4], end=5),
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
# optimizer
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=1e-4))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=600)
|
||||
val_cfg = dict(interval=40)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=600, val_interval=40)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='MultiStepLR', milestones=[200, 400], end=600),
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
_base_ = 'schedule_adam_step_5e.py'
|
||||
|
||||
train_cfg = dict(by_epoch=True, max_epochs=6)
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=6, val_interval=1)
|
||||
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
|
|
|
@ -2,10 +2,10 @@
|
|||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
|
||||
train_cfg = dict(by_epoch=False, max_iters=100000)
|
||||
val_cfg = dict(interval=100001) # Never evaluate
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='IterBasedTrainLoop', max_iters=100000)
|
||||
test_cfg = dict(type='TestLoop')
|
||||
val_cfg = None
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='PolyLR', power=0.9, eta_min=1e-7, by_epoch=False, end=100000),
|
||||
|
|
|
@ -2,10 +2,9 @@
|
|||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=1200)
|
||||
val_cfg = dict(interval=20) # Never evaluate
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1200, val_interval=20)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='PolyLR', power=0.9, eta_min=1e-7, end=1200),
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
train_cfg = dict(by_epoch=True, max_epochs=1500)
|
||||
val_cfg = dict(interval=20) # Never evaluate
|
||||
test_cfg = dict()
|
||||
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(type='SGD', lr=1e-3, momentum=0.9, weight_decay=5e-4))
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=1500, val_interval=20)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='PolyLR', power=0.9, eta_min=1e-7, end=1500),
|
||||
|
|
|
@ -2,10 +2,9 @@
|
|||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=160)
|
||||
val_cfg = dict(interval=20)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=160, val_interval=20)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='LinearLR', end=500, start_factor=0.001, by_epoch=False),
|
||||
|
|
|
@ -1,10 +1,9 @@
|
|||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(type='SGD', lr=1e-3, momentum=0.99, weight_decay=5e-4))
|
||||
train_cfg = dict(by_epoch=True, max_epochs=600)
|
||||
val_cfg = dict(interval=50)
|
||||
test_cfg = dict()
|
||||
|
||||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=600, val_interval=50)
|
||||
val_cfg = dict(type='ValLoop')
|
||||
test_cfg = dict(type='TestLoop')
|
||||
# learning policy
|
||||
param_scheduler = [
|
||||
dict(type='MultiStepLR', milestones=[200, 400], end=600),
|
||||
|
|
Loading…
Reference in New Issue