mirror of https://github.com/open-mmlab/mmocr.git
update metafile (#183)
parent
05aedf11d6
commit
1240169f18
configs
kie/sdmgr
textdet
textrecog
crnn
nrtr
robust_scanner
sar
seg
tps
|
@ -7,6 +7,7 @@ Collections:
|
|||
Training Resources: 1x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- UNet
|
||||
- SDMGRHead
|
||||
Paper: https://arxiv.org/abs/2103.14470.pdf
|
||||
README: configs/kie/sdmgr/README.md
|
||||
|
||||
|
|
|
@ -4,6 +4,7 @@ Collections:
|
|||
Training Data: ICDAR2015
|
||||
Training Techniques:
|
||||
- SGD with Momentum
|
||||
- Weight Decay
|
||||
Training Resources: 8x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- ResNet
|
||||
|
@ -18,7 +19,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.795
|
||||
|
@ -30,7 +31,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.830
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
Collections:
|
||||
- Name: Mask R-CNN
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Data: ICDAR SCUT-CTW1500
|
||||
Training Techniques:
|
||||
- SGD with Momentum
|
||||
- Weight Decay
|
||||
Training Resources: 8x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- RoI Align
|
||||
- ResNet
|
||||
- FPN
|
||||
- RPN
|
||||
Paper: https://arxiv.org/pdf/1703.06870.pdf
|
||||
README: configs/textdet/maskrcnn/README.md
|
||||
|
@ -18,7 +20,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean: 0.732
|
||||
|
@ -30,7 +32,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean: 0.825
|
||||
|
@ -42,7 +44,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: ICDAR2017
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: ICDAR2017
|
||||
Metrics:
|
||||
hmean: 0.789
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
Collections:
|
||||
- Name: PANet
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Data: ICDAR SCUT-CTW1500
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 8x GeForce GTX 1080 Ti
|
||||
|
@ -18,7 +18,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean-iou: 0.806
|
||||
|
@ -30,20 +30,8 @@ Models:
|
|||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.791
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/panet/panet_r18_fpem_ffm_sbn_600e_icdar2015_20210219-42dbe46a.pth
|
||||
|
||||
- Name: panet_r50_fpem_ffm_600e_icdar2017
|
||||
In Collection: PANet
|
||||
Config: configs/textdet/panet/panet_r50_fpem_ffm_600e_icdar2017.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2017
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2017
|
||||
Metrics:
|
||||
hmean-iou:
|
||||
Weights:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
Collections:
|
||||
- Name: PSENet
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Data: ICDAR SCUT-CTW1500
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 8x GeForce GTX 1080 Ti
|
||||
|
@ -18,7 +18,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean-iou: 0.784
|
||||
|
@ -30,7 +30,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.807
|
||||
|
@ -40,10 +40,10 @@ Models:
|
|||
In Collection: PSENet
|
||||
Config: configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py
|
||||
Metadata:
|
||||
Training Data: ICDAR2017
|
||||
Training Data: ICDAR2017 ICDAR2015
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
Dataset: ICDAR2017
|
||||
- Task: Text Detection
|
||||
Dataset: ICDAR2017 ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.847
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-eefd8fe6.pth
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
Collections:
|
||||
- Name: TextSnake
|
||||
Metadata:
|
||||
Training Data: ICDARDataset
|
||||
Training Data: SCUT-CTW1500
|
||||
Training Techniques:
|
||||
- SGD with Momentum
|
||||
Training Resources: 8x GeForce GTX 1080 Ti
|
||||
|
@ -18,7 +18,7 @@ Models:
|
|||
Metadata:
|
||||
Training Data: CTW1500
|
||||
Results:
|
||||
- Task: Instance Segmentation
|
||||
- Task: Text Detection
|
||||
Dataset: CTW1500
|
||||
Metrics:
|
||||
hmean-iou: 0.817
|
||||
|
|
|
@ -4,6 +4,8 @@ Collections:
|
|||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adadelta
|
||||
Epochs: 5
|
||||
Batch Size: 256
|
||||
Training Resources: 4x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- VeryDeepVgg
|
||||
|
@ -21,13 +23,13 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 80.5
|
||||
word_acc: 80.5
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 81.5
|
||||
word_acc: 81.5
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 86.5
|
||||
word_acc: 86.5
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_academic-a723a1c5.pth
|
||||
|
|
|
@ -4,6 +4,8 @@ Collections:
|
|||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Epochs: 5
|
||||
Batch Size: 8192
|
||||
Training Resources: 64x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
|
@ -24,27 +26,27 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 93.9
|
||||
word_acc: 93.9
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 80.0
|
||||
word_acc: 80.0
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 93.5
|
||||
word_acc: 93.5
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
acc: 74.5
|
||||
word_acc: 74.5
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: SVTP
|
||||
Metrics:
|
||||
acc: 78.5
|
||||
word_acc: 78.5
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 86.5
|
||||
word_acc: 86.5
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_academic_20210406-954db95e.pth
|
||||
|
||||
- Name: nrtr_r31_1by8_1by4_academic
|
||||
|
@ -58,25 +60,25 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 94.7
|
||||
word_acc: 94.7
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 87.5
|
||||
word_acc: 87.5
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 93.3
|
||||
word_acc: 93.3
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
acc: 75.1
|
||||
word_acc: 75.1
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: SVTP
|
||||
Metrics:
|
||||
acc: 78.9
|
||||
word_acc: 78.9
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 87.9
|
||||
word_acc: 87.9
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_1by8_1by4_academic_20210406-ce16e7cc.pth
|
||||
|
|
|
@ -4,6 +4,8 @@ Collections:
|
|||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Epochs: 5
|
||||
Batch Size: 1024
|
||||
Training Resources: 16x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
|
@ -30,25 +32,25 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 95.1
|
||||
word_acc: 95.1
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 89.2
|
||||
word_acc: 89.2
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 93.1
|
||||
word_acc: 93.1
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
acc: 77.8
|
||||
word_acc: 77.8
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: SVTP
|
||||
Metrics:
|
||||
acc: 80.3
|
||||
word_acc: 80.3
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 90.3
|
||||
word_acc: 90.3
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/robustscanner/robustscanner_r31_academic-5f05874f.pth
|
||||
|
|
|
@ -5,6 +5,8 @@ Collections:
|
|||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 48x GeForce GTX 1080 Ti
|
||||
Epochs: 5
|
||||
Batch Size: 3072
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
- SAREncoder
|
||||
|
@ -30,27 +32,27 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 95.0
|
||||
word_acc: 95.0
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 89.6
|
||||
word_acc: 89.6
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 93.7
|
||||
word_acc: 93.7
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
acc: 79.0
|
||||
word_acc: 79.0
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: SVTP
|
||||
Metrics:
|
||||
acc: 82.2
|
||||
word_acc: 82.2
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 88.9
|
||||
word_acc: 88.9
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_academic-a723a1c5.pth
|
||||
|
||||
- Name: sar_r31_sequential_decoder_academic
|
||||
|
@ -70,37 +72,25 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 95.2
|
||||
word_acc: 95.2
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 88.7
|
||||
word_acc: 88.7
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 92.4
|
||||
word_acc: 92.4
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
acc: 78.2
|
||||
word_acc: 78.2
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: SVTP
|
||||
Metrics:
|
||||
acc: 81.9
|
||||
word_acc: 81.9
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 89.6
|
||||
word_acc: 89.6
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_sequential_decoder_academic-d06c9a8e.pth
|
||||
|
||||
- Name: sar_r31_parallel_decoder_chinese
|
||||
In Collection: SAR
|
||||
Config: configs/textrecog/sar/sar_r31_parallel_decoder_chinese.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
Results:
|
||||
- Task:
|
||||
Dataset:
|
||||
Metrics:
|
||||
acc:
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_parallel_decoder_chineseocr_20210507-b4be8214.pth
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
Collections:
|
||||
- Name: SEG
|
||||
- Name: SegOCR
|
||||
Metadata:
|
||||
Training Data: mixture
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Epochs: 5
|
||||
Batch Size: 64
|
||||
Training Resources: 4x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- ResNet31OCR
|
||||
|
@ -13,7 +15,7 @@ Collections:
|
|||
|
||||
Models:
|
||||
- Name: seg_r31_1by16_fpnocr_academic
|
||||
In Collection: SEG
|
||||
In Collection: SegOCR
|
||||
Config: configs/textrecog/seg/seg_r31_1by16_fpnocr_academic.py
|
||||
Metadata:
|
||||
Training Data: SynthText
|
||||
|
@ -21,17 +23,17 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 90.9
|
||||
word_acc: 90.9
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 81.8
|
||||
word_acc: 81.8
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 90.7
|
||||
word_acc: 90.7
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 80.9
|
||||
word_acc: 80.9
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/seg/seg_r31_1by16_fpnocr_academic-72235b11.pth
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
Collections:
|
||||
- Name: TPS
|
||||
- Name: TPS-CRNN
|
||||
Metadata:
|
||||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adadelta
|
||||
Epochs: 5
|
||||
Batch Size: 256
|
||||
Training Resources: 4x GeForce GTX 1080 Ti
|
||||
Architecture:
|
||||
- TPSPreprocessor
|
||||
|
@ -25,25 +27,25 @@ Models:
|
|||
- Task: Regular Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
acc: 80.8
|
||||
word_acc: 80.8
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
acc: 81.3
|
||||
word_acc: 81.3
|
||||
- Task: Regular Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
acc: 85.0
|
||||
word_acc: 85.0
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
acc: 59.6
|
||||
word_acc: 59.6
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: SVTP
|
||||
Metrics:
|
||||
acc: 68.1
|
||||
word_acc: 68.1
|
||||
- Task: Irregular Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
acc: 53.8
|
||||
word_acc: 53.8
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/tps/crnn_tps_academic_dataset_20210510-d221a905.pth
|
||||
|
|
Loading…
Reference in New Issue