[Feature] Add ArT ()

* add art

* fix typo
pull/1031/head
Xinyu Wang 2022-05-17 23:59:15 +08:00 committed by GitHub
parent d9bb3d6359
commit 13986f497d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 350 additions and 0 deletions
docs/en/datasets
tools/data

View File

@ -31,6 +31,7 @@
| BID | [homepage](https://github.com/ricardobnjunior/Brazilian-Identity-Document-Dataset) | - | - | - |
| RCTW | [homepage](https://rctw.vlrlab.net/index.html) | - | - | - |
| HierText | [homepage](https://github.com/google-research-datasets/hiertext) | - | - | - |
| ArT | [homepage](https://rrc.cvc.uab.es/?ch=14) | - | - | - |
### Install AWS CLI (optional)
@ -941,3 +942,41 @@ inconsistency results in false examples in the training set. Therefore, users sh
│   ├── instances_training.json
│   └── instances_val.json
```
## ArT
- Step1: Download `train_images.tar.gz`, and `train_labels.json` from the [homepage](https://rrc.cvc.uab.es/?ch=14&com=downloads) to `art/`
```bash
mkdir art && cd art
mkdir annotations
# Download ArT dataset
wget https://dataset-bj.cdn.bcebos.com/art/train_images.tar.gz --no-check-certificate
wget https://dataset-bj.cdn.bcebos.com/art/train_labels.json --no-check-certificate
# Extract
tar -xf train_images.tar.gz
mv train_images imgs
mv train_labels.json annotations/
# Remove unnecessary files
rm train_images.tar.gz
```
- Step2: Generate `instances_training.json` and `instances_val.json` (optional). Since the test annotations are not publicly available, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
# Annotations of ArT test split is not publicly available, split a validation set by adding --val-ratio 0.2
python tools/data/textdet/art_converter.py PATH/TO/art --nproc 4
```
- After running the above codes, the directory structure should be as follows:
```text
│── art
│   ├── annotations
│   ├── imgs
│   ├── instances_training.json
│   └── instances_val.json (optional)
```

View File

@ -35,6 +35,7 @@
| BID | [homepage](https://github.com/ricardobnjunior/Brazilian-Identity-Document-Dataset) | - | - | - |
| RCTW | [homepage](https://rctw.vlrlab.net/index.html) | - | - | - |
| HierText | [homepage](https://github.com/google-research-datasets/hiertext) | - | - | - |
| ArT | [homepage](https://rrc.cvc.uab.es/?ch=14) | - | - | - |
(*) Since the official homepage is unavailable now, we provide an alternative for quick reference. However, we do not guarantee the correctness of the dataset.
@ -1116,3 +1117,40 @@ should be as follows:
│   ├── train_label.jsonl
│   └── val_label.jsonl
```
## ArT
- Step1: Download `train_images.tar.gz`, and `train_labels.json` from the [homepage](https://rrc.cvc.uab.es/?ch=14&com=downloads) to `art/`
```bash
mkdir art && cd art
mkdir annotations
# Download ArT dataset
wget https://dataset-bj.cdn.bcebos.com/art/train_task2_images.tar.gz
wget https://dataset-bj.cdn.bcebos.com/art/train_task2_labels.json
# Extract
tar -xf train_task2_images.tar.gz
mv train_task2_images crops
mv train_task2_labels.json annotations/
# Remove unnecessary files
rm train_images.tar.gz
```
- Step2: Generate `train_label.jsonl` and `val_label.jsonl` (optional). Since the test annotations are not publicly available, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.
```bash
# Annotations of ArT test split is not publicly available, split a validation set by adding --val-ratio 0.2
python tools/data/textrecog/art_converter.py PATH/TO/art
```
- After running the above codes, the directory structure should be as follows:
```text
│── art
│   ├── crops
│   ├── train_label.jsonl
│   └── val_label.jsonl (optional)
```

View File

@ -0,0 +1,144 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os.path as osp
import mmcv
from mmocr.utils import convert_annotations
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and validation set of ArT ')
parser.add_argument('root_path', help='Root dir path of ArT')
parser.add_argument(
'--val-ratio', help='Split ratio for val set', default=0.0, type=float)
args = parser.parse_args()
return args
def collect_art_info(root_path, split, ratio, print_every=1000):
"""Collect the annotation information.
The annotation format is as the following:
{
'gt_1726': # 'gt_1726' is file name
[
{
'transcription': '燎申集团',
'points': [
[141, 199],
[237, 201],
[313, 236],
[357, 283],
[359, 300],
[309, 261],
[233, 230],
[140, 231]
],
'language': 'Chinese',
'illegibility': False
},
...
],
...
}
Args:
root_path (str): Root path to the dataset
split (str): Dataset split, which should be 'train' or 'val'
ratio (float): Split ratio for val set
print_every (int): Print log info per iteration
Returns:
img_info (dict): The dict of the img and annotation information
"""
annotation_path = osp.join(root_path, 'annotations/train_labels.json')
if not osp.exists(annotation_path):
raise Exception(
f'{annotation_path} not exists, please check and try again.')
annotation = mmcv.load(annotation_path)
img_prefixes = annotation.keys()
trn_files, val_files = [], []
if ratio > 0:
for i, file in enumerate(img_prefixes):
if i % math.floor(1 / ratio):
trn_files.append(file)
else:
val_files.append(file)
else:
trn_files, val_files = img_prefixes, []
print(f'training #{len(trn_files)}, val #{len(val_files)}')
if split == 'train':
img_prefixes = trn_files
elif split == 'val':
img_prefixes = val_files
else:
raise NotImplementedError
img_infos = []
for i, prefix in enumerate(img_prefixes):
if i > 0 and i % print_every == 0:
print(f'{i}/{len(img_prefixes)}')
img_file = osp.join(root_path, 'imgs', prefix + '.jpg')
# Skip not exist images
if not osp.exists(img_file):
continue
img = mmcv.imread(img_file)
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(annotation_path)))
anno_info = []
for ann in annotation[prefix]:
segmentation = []
for x, y in ann['points']:
segmentation.append(max(0, x))
segmentation.append(max(0, y))
xs, ys = segmentation[::2], segmentation[1::2]
x, y = min(xs), min(ys)
w, h = max(xs) - x, max(ys) - y
bbox = [x, y, w, h]
if ann['transcription'] == '###' or ann['illegibility']:
iscrowd = 1
else:
iscrowd = 0
anno = dict(
iscrowd=iscrowd,
category_id=1,
bbox=bbox,
area=w * h,
segmentation=[segmentation])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
img_infos.append(img_info)
return img_infos
def main():
args = parse_args()
root_path = args.root_path
print('Processing training set...')
training_infos = collect_art_info(root_path, 'train', args.val_ratio)
convert_annotations(training_infos,
osp.join(root_path, 'instances_training.json'))
if args.val_ratio > 0:
print('Processing validation set...')
val_infos = collect_art_info(root_path, 'val', args.val_ratio)
convert_annotations(val_infos, osp.join(root_path,
'instances_val.json'))
print('Finish')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,129 @@
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os.path as osp
import mmcv
from mmocr.utils.fileio import list_to_file
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and validation set of ArT ')
parser.add_argument('root_path', help='Root dir path of ArT')
parser.add_argument(
'--val-ratio', help='Split ratio for val set', default=0.0, type=float)
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
parser.add_argument(
'--format',
default='jsonl',
help='Use jsonl or string to format annotations',
choices=['jsonl', 'txt'])
args = parser.parse_args()
return args
def convert_art(root_path, split, ratio, format):
"""Collect the annotation information and crop the images.
The annotation format is as the following:
{
"gt_2836_0": [
{
"transcription": "URDER",
"points": [
[25, 51],
[0, 2],
[21, 0],
[42, 43]
],
"language": "Latin",
"illegibility": false
}
], ...
}
Args:
root_path (str): The root path of the dataset
split (str): The split of dataset. Namely: training or val
ratio (float): Split ratio for val set
format (str): Annotation format, whether be txt or jsonl
Returns:
img_info (dict): The dict of the img and annotation information
"""
annotation_path = osp.join(root_path,
'annotations/train_task2_labels.json')
if not osp.exists(annotation_path):
raise Exception(
f'{annotation_path} not exists, please check and try again.')
annotation = mmcv.load(annotation_path)
# outputs
dst_label_file = osp.join(root_path, f'{split}_label.{format}')
img_prefixes = annotation.keys()
trn_files, val_files = [], []
if ratio > 0:
for i, file in enumerate(img_prefixes):
if i % math.floor(1 / ratio):
trn_files.append(file)
else:
val_files.append(file)
else:
trn_files, val_files = img_prefixes, []
print(f'training #{len(trn_files)}, val #{len(val_files)}')
if split == 'train':
img_prefixes = trn_files
elif split == 'val':
img_prefixes = val_files
else:
raise NotImplementedError
labels = []
for prefix in img_prefixes:
text_label = annotation[prefix][0]['transcription']
dst_img_name = prefix + '.jpg'
if format == 'txt':
labels.append(f'crops/{dst_img_name}' f' {text_label}')
elif format == 'jsonl':
labels.append(
json.dumps(
{
'filename': f'crops/{dst_img_name}',
'text': text_label
},
ensure_ascii=False))
list_to_file(dst_label_file, labels)
def main():
args = parse_args()
root_path = args.root_path
print('Processing training set...')
convert_art(
root_path=root_path,
split='train',
ratio=args.val_ratio,
format=args.format)
if args.val_ratio > 0:
print('Processing validation set...')
convert_art(
root_path=root_path,
split='val',
ratio=args.val_ratio,
format=args.format)
print('Finish')
if __name__ == '__main__':
main()