[Feature] CodeCamp #116 Add SROIE to dataset preparer (#1639)

* added sroie/metafile.yml

* add sample_anno.md and textdet.py

* modify and add all

* fix lint

* fix lint

* fix lint

* Update mmocr/datasets/preparers/data_converpyter.

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>

* fix the reviewed

* add comment of try to sroie_parser.py

* modify data_obtainer.py

* fix lint errors

* fix download link

Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
pull/1651/head
Ferry Huang 2022-12-29 16:52:51 +08:00 committed by GitHub
parent b79382cd6b
commit 1413b5043a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 183 additions and 1 deletions

View File

@ -0,0 +1,31 @@
Name: 'Scanned Receipts OCR and Information Extraction'
Paper:
Title: ICDAR2019 Competition on Scanned Receipt OCR and Information Extraction
URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8977955
Venue: ICDAR
Year: '2019'
BibTeX: '@INPROCEEDINGS{8977955,
author={Huang, Zheng and Chen, Kai and He, Jianhua and Bai, Xiang and Karatzas, Dimosthenis and Lu, Shijian and Jawahar, C. V.},
booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
title={ICDAR2019 Competition on Scanned Receipt OCR and Information Extraction},
year={2019},
volume={},
number={},
pages={1516-1520},
doi={10.1109/ICDAR.2019.00244}}'
Data:
Website: https://rrc.cvc.uab.es/?ch=13
Language:
- English
Scene:
- Document
Granularity:
- Word
Tasks:
- textdet
- textrecog
- textspotting
License:
Type: CC BY 4.0
Link: https://creativecommons.org/licenses/by/4.0/
Format: .txt

View File

@ -0,0 +1,9 @@
**Text Detection, Text Recognition and Text Spotting**
```text
# x1,y1,x2,y2,x3,y3,x4,y4,trans
72,25,326,25,326,64,72,64,TAN WOON YANN
50,82,440,82,440,121,50,121,BOOK TA .K(TAMAN DAYA) SDN BND
205,121,285,121,285,139,205,139,789417-W
```

View File

@ -0,0 +1,55 @@
data_root = 'data/sroie'
cache_path = 'data/cache'
data_obtainer = dict(
type='NaiveDataObtainer',
cache_path=cache_path,
data_root=data_root,
files=[
dict(
url='https://download.openmmlab.com/mmocr/data/'
'sroie/0325updated.task1train(626p).zip',
save_name='0325updated.task1train(626p).zip',
md5='16137490f6865caac75772b9111d348c',
split=['train'],
content=['image', 'annotation'],
mapping=[[
'0325updated/0325updated.task1train(626p)/*.jpg',
'textdet_imgs/train'
],
[
'0325updated/0325updated.task1train(626p)/*.txt',
'annotations/train'
]]),
dict(
url='https://download.openmmlab.com/mmocr/data/'
'sroie/task1&2_test(361p).zip',
save_name='task1&2_test(361p).zip',
md5='1bde54705db0995c57a6e34cce437fea',
split=['test'],
content=['image'],
mapping=[[
'task1&2_test(361p)/fulltext_test(361p)', 'textdet_imgs/test'
]]),
dict(
url='https://download.openmmlab.com/mmocr/data/sroie/text.zip',
save_name='text.zip',
md5='8c534653f252ff4d3943fa27a956a74b',
split=['test'],
content=['annotation'],
mapping=[['text', 'annotations/test']]),
])
data_converter = dict(
type='TextDetDataConverter',
splits=['train', 'test'],
data_root=data_root,
gatherer=dict(
type='pair_gather',
suffixes=['.jpg'],
rule=[r'X(\d+)\.([jJ][pP][gG])', r'X\1.txt']),
parser=dict(type='SROIETextDetAnnParser', encoding='utf-8-sig'),
dumper=dict(type='JsonDumper'),
delete=['text', 'task1&2_test(361p)', '0325updated', 'annotations'])
config_generator = dict(type='TextDetConfigGenerator', data_root=data_root)

View File

@ -0,0 +1,5 @@
_base_ = ['textdet.py']
data_converter = dict(type='TextRecogCropConverter')
config_generator = dict(type='TextRecogConfigGenerator')

View File

@ -0,0 +1,5 @@
_base_ = ['textdet.py']
data_converter = dict(type='TextSpottingDataConverter')
config_generator = dict(type='TextSpottingConfigGenerator')

View File

@ -177,6 +177,8 @@ class BaseDataConverter:
"""
files = list()
for file in list_files(img_path, suffixes):
if not re.match(rule[0], osp.basename(file)):
continue
file2 = re.sub(rule[0], rule[1], osp.basename(file))
file2 = file.replace(osp.basename(file), file2)
file2 = file2.replace(self.img_dir, 'annotations')

View File

@ -4,6 +4,7 @@ from .funsd_parser import FUNSDTextDetAnnParser
from .icdar_txt_parser import (ICDARTxtTextDetAnnParser,
ICDARTxtTextRecogAnnParser)
from .naf_parser import NAFAnnParser
from .sroie_parser import SROIETextDetAnnParser
from .svt_parser import SVTTextDetAnnParser
from .totaltext_parser import TotaltextTextDetAnnParser
from .wildreceipt_parser import WildreceiptKIEAnnParser
@ -12,5 +13,5 @@ __all__ = [
'ICDARTxtTextDetAnnParser', 'ICDARTxtTextRecogAnnParser',
'TotaltextTextDetAnnParser', 'WildreceiptKIEAnnParser',
'COCOTextDetAnnParser', 'SVTTextDetAnnParser', 'FUNSDTextDetAnnParser',
'NAFAnnParser'
'SROIETextDetAnnParser', 'NAFAnnParser'
]

View File

@ -0,0 +1,74 @@
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple
from mmocr.utils import bbox2poly
from ..data_preparer import DATA_PARSERS
from .base import BaseParser
@DATA_PARSERS.register_module()
class SROIETextDetAnnParser(BaseParser):
"""SROIE Txt Format Text Detection Annotation Parser.
The original annotation format of this dataset is stored in txt files,
which is formed as the following format:
x1, y1, x2, y2, x3, y3, x4, y4, transcription
Args:
separator (str): The separator between each element in a line. Defaults
to ','.
ignore (str): The text to be ignored. Defaults to '###'.
format (str): The format of the annotation. Defaults to
'x1,y1,x2,y2,x3,y3,x4,trans'.
encoding (str): The encoding of the annotation file. Defaults to
'utf-8-sig'.
nproc (int): The number of processes to parse the annotation. Defaults
to 1.
remove_strs (List[str], Optional): Used to remove redundant strings in
the transcription. Defaults to None.
mode (str, optional): The mode of the box converter. Supported modes
are 'xywh' and 'xyxy'. Defaults to None.
"""
def __init__(self,
separator: str = ',',
ignore: str = '###',
format: str = 'x1,y1,x2,y2,x3,y3,x4,y4,trans',
encoding: str = 'utf-8-sig',
nproc: int = 1,
remove_strs: Optional[List[str]] = None,
mode: str = None) -> None:
self.sep = separator
self.format = format
self.encoding = encoding
self.ignore = ignore
self.mode = mode
self.remove_strs = remove_strs
super().__init__(nproc=nproc)
def parse_file(self, file: Tuple, split: str) -> Tuple:
"""Parse single annotation."""
img_file, txt_file = file
instances = list()
try:
# there might be some illegal symbols in the annotation
# which cannot be parsed by loader
for anno in self.loader(txt_file, self.sep, self.format,
self.encoding):
anno = list(anno.values())
if self.remove_strs is not None:
for strs in self.remove_strs:
for i in range(len(anno)):
if strs in anno[i]:
anno[i] = anno[i].replace(strs, '')
poly = list(map(float, anno[0:-1]))
if self.mode is not None:
poly = bbox2poly(poly, self.mode)
poly = poly.tolist()
text = anno[-1]
instances.append(
dict(poly=poly, text=text, ignore=text == self.ignore))
except Exception:
pass
return img_file, instances