mirror of https://github.com/open-mmlab/mmocr.git
[Feature] Add FUNSD Converter (#808)
* Add FUNSD Converter * Update tools/data/textrecog/funsd_converter.py Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update tools/data/textrecog/funsd_converter.py Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update tools/data/textdet/funsd_converter.py Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * blank line between sections Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * fix incorrect docstrings * fix docstrings & fix timer * add --preserve-vertical arg for preserving vertical texts * fix --preserve-vertical * [doc] fix recog.md incorrect description * fix docstring style Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * fix docstring spaces Co-authored-by: Tong Gao <gaotongxiao@gmail.com>pull/685/head
parent
fb77352eb2
commit
14c75da7bd
|
@ -36,18 +36,25 @@ The structure of the text detection dataset directory is organized as follows.
|
|||
│ ├── syntext_word_eng
|
||||
│ ├── emcs_imgs
|
||||
│ └── instances_training.json
|
||||
|── funsd
|
||||
| ├── annotations
|
||||
│ ├── imgs
|
||||
│ ├── instances_test.json
|
||||
│ └── instances_training.json
|
||||
```
|
||||
|
||||
|Dataset|Images| | Annotation Files | | |
|
||||
| :-------: | :------------------------------------------------------------: | :----------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------: | :-------------------------------------: | :--------------------------------------------------------------------------------------------: |
|
||||
| | | training | validation | testing | |
|
||||
| CTW1500 | [homepage](https://github.com/Yuliang-Liu/Curve-Text-Detector) | - | - | - |
|
||||
| ICDAR2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) | - | [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json) |
|
||||
| ICDAR2017 | [homepage](https://rrc.cvc.uab.es/?ch=8&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_training.json) | [instances_val.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_val.json) | - | | |
|
||||
| Synthtext | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | instances_training.lmdb ([data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb), [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb)) | - | - |
|
||||
| TextOCR | [homepage](https://textvqa.org/textocr/dataset) | - | - | -
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | -
|
||||
| CurvedSynText150k | [homepage](https://github.com/aim-uofa/AdelaiDet/blob/master/datasets/README.md) \| [Part1](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) \| [Part2](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) | [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) | - | - |
|
||||
| Dataset | Images | | Annotation Files | | |
|
||||
| :---------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------: | :---: |
|
||||
| | | training | validation | testing | |
|
||||
| CTW1500 | [homepage](https://github.com/Yuliang-Liu/Curve-Text-Detector) | - | - | - |
|
||||
| ICDAR2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_training.json) | - | [instances_test.json](https://download.openmmlab.com/mmocr/data/icdar2015/instances_test.json) |
|
||||
| ICDAR2017 | [homepage](https://rrc.cvc.uab.es/?ch=8&com=downloads) | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_training.json) | [instances_val.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_val.json) | - | | |
|
||||
| Synthtext | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | instances_training.lmdb ([data.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/data.mdb), [lock.mdb](https://download.openmmlab.com/mmocr/data/synthtext/instances_training.lmdb/lock.mdb)) | - | - |
|
||||
| TextOCR | [homepage](https://textvqa.org/textocr/dataset) | - | - | - |
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | - |
|
||||
| CurvedSynText150k | [homepage](https://github.com/aim-uofa/AdelaiDet/blob/master/datasets/README.md) \| [Part1](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) \| [Part2](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) | [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) | - | - |
|
||||
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | - |
|
||||
|
||||
|
||||
## Important Note
|
||||
|
||||
|
@ -178,3 +185,30 @@ rm images.zip
|
|||
```bash
|
||||
python tools/data/common/curvedsyntext_converter.py PATH/TO/CurvedSynText150k --nproc 4
|
||||
```
|
||||
|
||||
### FUNSD
|
||||
|
||||
- Step1: Download [dataset.zip](https://guillaumejaume.github.io/FUNSD/dataset.zip) to `funsd/`.
|
||||
|
||||
```bash
|
||||
mkdir funsd && cd funsd
|
||||
|
||||
# Download FUNSD dataset
|
||||
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
|
||||
unzip -q dataset.zip
|
||||
|
||||
# For images
|
||||
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/
|
||||
|
||||
# For annotations
|
||||
mkdir annotations
|
||||
mv dataset/training_data/annotations annotations/training && mv dataset/testing_data/annotations annotations/test
|
||||
|
||||
rm dataset.zip && rm -rf dataset
|
||||
```
|
||||
|
||||
- Step2: Generate `instances_training.json` and `instances_test.json` with following command:
|
||||
|
||||
```bash
|
||||
python tools/data/textdet/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
|
|
@ -73,25 +73,33 @@
|
|||
│ │ ├── train_5_label.txt
|
||||
│ │ ├── train_f_label.txt
|
||||
│ │ ├── val_label.txt
|
||||
│ ├── funsd
|
||||
│ │ ├── imgs
|
||||
│ │ ├── dst_imgs
|
||||
│ │ ├── annotations
|
||||
│ │ ├── train_label.txt
|
||||
│ │ ├── test_label.txt
|
||||
```
|
||||
|
||||
| Dataset | images | annotation file | annotation file |
|
||||
| :--------: | :-----------------------------------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------: |
|
||||
| | | training | test |
|
||||
| coco_text | [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - | |
|
||||
| icdar_2011 | [homepage](http://www.cvc.uab.es/icdar2011competition/?com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | - | |
|
||||
| icdar_2013 | [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) | |
|
||||
| icdar_2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) | |
|
||||
| IIIT5K | [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) | |
|
||||
| ct80 | [homepage](http://cs-chan.com/downloads_CUTE80_dataset.html) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) | |
|
||||
| svt |[homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | |
|
||||
| svtp | [unofficial homepage\[1\]](https://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-Datasets) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | |
|
||||
| MJSynth (Syn90k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) | - | |
|
||||
| SynthText (Synth800k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) \|[shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) | - | |
|
||||
| SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) | - | |
|
||||
| TextOCR | [homepage](https://textvqa.org/textocr/dataset) | - | - | |
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
|
||||
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) |[annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text)| |
|
||||
| Dataset | images | annotation file | annotation file |
|
||||
| :-------------------: | :---------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | :-----------------------------------------------------------------------------------------------------------------------: |
|
||||
| | | training | test |
|
||||
| coco_text | [homepage](https://rrc.cvc.uab.es/?ch=5&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/coco_text/train_label.txt) | - | |
|
||||
| icdar_2011 | [homepage](http://www.cvc.uab.es/icdar2011competition/?com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | - | |
|
||||
| icdar_2013 | [homepage](https://rrc.cvc.uab.es/?ch=2&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/train_label.txt) | [test_label_1015.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2013/test_label_1015.txt) | |
|
||||
| icdar_2015 | [homepage](https://rrc.cvc.uab.es/?ch=4&com=downloads) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/icdar_2015/test_label.txt) | |
|
||||
| IIIT5K | [homepage](http://cvit.iiit.ac.in/projects/SceneTextUnderstanding/IIIT5K.html) | [train_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/train_label.txt) | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/IIIT5K/test_label.txt) | |
|
||||
| ct80 | [homepage](http://cs-chan.com/downloads_CUTE80_dataset.html) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/ct80/test_label.txt) | |
|
||||
| svt | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | |
|
||||
| svtp | [unofficial homepage\[1\]](https://github.com/Jyouhou/Case-Sensitive-Scene-Text-Recognition-Datasets) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | |
|
||||
| MJSynth (Syn90k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/shuffle_labels.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/Syn90k/label.txt) | - | |
|
||||
| SynthText (Synth800k) | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [alphanumeric_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/alphanumeric_labels.txt) \|[shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) \| [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/label.txt) | - | |
|
||||
| SynthAdd | [SynthText_Add.zip](https://pan.baidu.com/s/1uV0LtoNmcxbO-0YA7Ch4dg) (code:627x) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt) | - | |
|
||||
| TextOCR | [homepage](https://textvqa.org/textocr/dataset) | - | - | |
|
||||
| Totaltext | [homepage](https://github.com/cs-chan/Total-Text-Dataset) | - | - | |
|
||||
| OpenVINO | [Open Images](https://github.com/cvdfoundation/open-images-dataset) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | [annotations](https://storage.openvinotoolkit.org/repositories/openvino_training_extensions/datasets/open_images_v5_text) | |
|
||||
| FUNSD | [homepage](https://guillaumejaume.github.io/FUNSD/) | - | - | |
|
||||
|
||||
|
||||
(*) Since the official homepage is unavailable now, we provide an alternative for quick reference. However, we do not guarantee the correctness of the dataset.
|
||||
|
||||
|
@ -286,3 +294,30 @@ python tools/data/utils/txt2lmdb.py -i data/mixture/Syn90k/label.txt -o data/mix
|
|||
```bash
|
||||
python tools/data/textrecog/openvino_converter.py /path/to/openvino 4
|
||||
```
|
||||
|
||||
### FUNSD
|
||||
|
||||
- Step1: Download [dataset.zip](https://guillaumejaume.github.io/FUNSD/dataset.zip) to `funsd/`.
|
||||
|
||||
```bash
|
||||
mkdir funsd && cd funsd
|
||||
|
||||
# Download FUNSD dataset
|
||||
wget https://guillaumejaume.github.io/FUNSD/dataset.zip
|
||||
unzip -q dataset.zip
|
||||
|
||||
# For images
|
||||
mv dataset/training_data/images imgs && mv dataset/testing_data/images/* imgs/
|
||||
|
||||
# For annotations
|
||||
mkdir annotations
|
||||
mv dataset/training_data/annotations annotations/training && mv dataset/testing_data/annotations annotations/test
|
||||
|
||||
rm dataset.zip && rm -rf dataset
|
||||
```
|
||||
|
||||
- Step2: Generate `train_label.txt` and `test_label.txt` and crop images using 4 processes with following command (add `--preserve-vertical` if you wish to preserve the images containing vertical texts):
|
||||
|
||||
```bash
|
||||
python tools/data/textrecog/funsd_converter.py PATH/TO/funsd --nproc 4
|
||||
```
|
||||
|
|
|
@ -0,0 +1,157 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
|
||||
from mmocr.utils import convert_annotations
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for gt_file in os.listdir(gt_dir):
|
||||
ann_list.append(osp.join(gt_dir, gt_file))
|
||||
imgs_list.append(osp.join(img_dir, gt_file.replace('.json', '.png')))
|
||||
|
||||
files = list(zip(sorted(imgs_list), sorted(ann_list)))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.json':
|
||||
img_info = load_json_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_json_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
annotation = mmcv.load(gt_file)
|
||||
anno_info = []
|
||||
for form in annotation['form']:
|
||||
for ann in form['words']:
|
||||
|
||||
iscrowd = 1 if len(ann['text']) == 0 else 0
|
||||
|
||||
x1, y1, x2, y2 = ann['box']
|
||||
x = max(0, min(math.floor(x1), math.floor(x2)))
|
||||
y = max(0, min(math.floor(y1), math.floor(y2)))
|
||||
w, h = math.ceil(abs(x2 - x1)), math.ceil(abs(y2 - y1))
|
||||
bbox = [x, y, w, h]
|
||||
segmentation = [x, y, x + w, y, x + w, y + h, x, y + h]
|
||||
|
||||
anno = dict(
|
||||
iscrowd=iscrowd,
|
||||
category_id=1,
|
||||
bbox=bbox,
|
||||
area=w * h,
|
||||
segmentation=[segmentation])
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and test set of FUNSD ')
|
||||
parser.add_argument('root_path', help='Root dir path of FUNSD')
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='number of process')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['training', 'test']:
|
||||
print(f'Processing {split} set...')
|
||||
with mmcv.Timer(print_tmpl='It takes {}s to convert FUNSD annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs'),
|
||||
osp.join(root_path, 'annotations', split))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
convert_annotations(
|
||||
image_infos, osp.join(root_path,
|
||||
'instances_' + split + '.json'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -0,0 +1,203 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
|
||||
from mmocr.datasets.pipelines.crop import crop_img
|
||||
from mmocr.utils.fileio import list_to_file
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for gt_file in os.listdir(gt_dir):
|
||||
ann_list.append(osp.join(gt_dir, gt_file))
|
||||
imgs_list.append(osp.join(img_dir, gt_file.replace('.json', '.png')))
|
||||
|
||||
files = list(zip(sorted(imgs_list), sorted(ann_list)))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
|
||||
'.')[0]
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.json':
|
||||
img_info = load_json_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_json_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
|
||||
annotation = mmcv.load(gt_file)
|
||||
anno_info = []
|
||||
for form in annotation['form']:
|
||||
for ann in form['words']:
|
||||
|
||||
# Ignore illegible samples
|
||||
if len(ann['text']) == 0:
|
||||
continue
|
||||
|
||||
x1, y1, x2, y2 = ann['box']
|
||||
x = max(0, min(math.floor(x1), math.floor(x2)))
|
||||
y = max(0, min(math.floor(y1), math.floor(y2)))
|
||||
w, h = math.ceil(abs(x2 - x1)), math.ceil(abs(y2 - y1))
|
||||
bbox = [x, y, x + w, y, x + w, y + h, x, y + h]
|
||||
word = ann['text']
|
||||
|
||||
anno = dict(bbox=bbox, word=word)
|
||||
anno_info.append(anno)
|
||||
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def generate_ann(root_path, split, image_infos, preserve_vertical):
|
||||
"""Generate cropped annotations and label txt file.
|
||||
|
||||
Args:
|
||||
root_path (str): The root path of the dataset
|
||||
split (str): The split of dataset. Namely: training or test
|
||||
image_infos (list[dict]): A list of dicts of the img and
|
||||
annotation information
|
||||
preserve_vertical (bool): Whether to preserve vertical texts
|
||||
"""
|
||||
|
||||
dst_image_root = osp.join(root_path, 'dst_imgs', split)
|
||||
if split == 'training':
|
||||
dst_label_file = osp.join(root_path, 'train_label.txt')
|
||||
elif split == 'test':
|
||||
dst_label_file = osp.join(root_path, 'test_label.txt')
|
||||
os.makedirs(dst_image_root, exist_ok=True)
|
||||
|
||||
lines = []
|
||||
for image_info in image_infos:
|
||||
index = 1
|
||||
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
|
||||
image = mmcv.imread(src_img_path)
|
||||
src_img_root = image_info['file_name'].split('.')[0]
|
||||
|
||||
for anno in image_info['anno_info']:
|
||||
word = anno['word']
|
||||
dst_img = crop_img(image, anno['bbox'])
|
||||
h, w, _ = dst_img.shape
|
||||
|
||||
# Skip invalid annotations
|
||||
if min(dst_img.shape) == 0:
|
||||
continue
|
||||
# Skip vertical texts
|
||||
if not preserve_vertical and h / w > 2:
|
||||
continue
|
||||
|
||||
dst_img_name = f'{src_img_root}_{index}.png'
|
||||
index += 1
|
||||
dst_img_path = osp.join(dst_image_root, dst_img_name)
|
||||
mmcv.imwrite(dst_img, dst_img_path)
|
||||
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
||||
f'{word}')
|
||||
list_to_file(dst_label_file, lines)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and test set of FUNSD ')
|
||||
parser.add_argument('root_path', help='Root dir path of FUNSD')
|
||||
parser.add_argument(
|
||||
'--preserve-vertical',
|
||||
help='Preserve samples containing vertical texts',
|
||||
action='store_true')
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of processes')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['training', 'test']:
|
||||
print(f'Processing {split} set...')
|
||||
with mmcv.Timer(print_tmpl='It takes {}s to convert FUNSD annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs'),
|
||||
osp.join(root_path, 'annotations', split))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
generate_ann(root_path, split, image_infos, args.preserve_vertical)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue