[Refactor] encoder_decoder_recognizer

pull/1178/head
liukuikun 2022-05-26 14:32:06 +00:00 committed by gaotongxiao
parent 58c59e80dd
commit 206c4ccc65
3 changed files with 130 additions and 150 deletions

View File

@ -4,6 +4,7 @@
# mmocr/models/textdet/postprocess/utils.py
# .*/utils.py
mmocr/models/textrecog/recognizers/base.py
mmocr/models/textrecog/recognizers/encode_decode_recognizer.py
.*/__init__.py
# It will be removed after all transforms have been refactored into processing.py
mmocr/datasets/pipelines/transforms.py

View File

@ -56,6 +56,31 @@ class BaseRecognizer(BaseModule, metaclass=ABCMeta):
def device(self) -> torch.device:
return self.pixel_mean.device
@property
def with_backbone(self):
"""bool: whether the recognizer has a backbone"""
return getattr(self, 'backbone', None) is not None
@property
def with_encoder(self):
"""bool: whether the recognizer has an encoder"""
return getattr(self, 'encoder', None) is not None
@property
def with_preprocessor(self):
"""bool: whether the recognizer has a preprocessor"""
return getattr(self, 'preprocessor', None) is not None
@property
def with_dictionary(self):
"""bool: whether the recognizer has a dictionary"""
return getattr(self, 'dictionary', None) is not None
@property
def with_decoder(self):
"""bool: whether the recognizer has a decoder"""
return getattr(self, 'decoder', None) is not None
@abstractmethod
def extract_feat(self, inputs: torch.Tensor) -> torch.Tensor:
"""Extract features from images."""
@ -77,8 +102,8 @@ class BaseRecognizer(BaseModule, metaclass=ABCMeta):
# NOTE the batched image size information may be useful for
# calculating valid ratio.
batch_input_shape = tuple(inputs[0].size()[-2:])
for data_samples in data_samples:
data_samples.set_metainfo({'batch_input_shape': batch_input_shape})
for data_sample in data_samples:
data_sample.set_metainfo({'batch_input_shape': batch_input_shape})
@abstractmethod
def simple_test(self, inputs: torch.Tensor,
@ -86,7 +111,6 @@ class BaseRecognizer(BaseModule, metaclass=ABCMeta):
**kwargs) -> Sequence[TextRecogDataSample]:
pass
@abstractmethod
def aug_test(self, imgs: torch.Tensor,
data_samples: Sequence[Sequence[TextRecogDataSample]],
**kwargs):
@ -230,16 +254,8 @@ class BaseRecognizer(BaseModule, metaclass=ABCMeta):
``pred_text``.
"""
# TODO: Consider merging with forward_train logic
batch_size = len(data_samples)
batch_img_metas = []
for batch_index in range(batch_size):
metainfo = data_samples[batch_index].metainfo
batch_input_shape = tuple(inputs[0].size()[-2:])
for data_sample in data_samples:
data_sample.set_metainfo({'batch_input_shape': batch_input_shape})
# TODO: maybe remove to stack_batch
# NOTE the batched image size information may be useful for
# calculating valid ratio.
metainfo['batch_input_shape'] = \
tuple(inputs.size()[-2:])
batch_img_metas.append(metainfo)
return self.simple_test(inputs, batch_img_metas, **kwargs)
return self.simple_test(inputs, data_samples, **kwargs)

View File

@ -1,181 +1,144 @@
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import Dict, Optional, Sequence
import torch
from mmocr.registry import MODELS
from mmocr.core.data_structures import TextRecogDataSample
from mmocr.registry import MODELS, TASK_UTILS
from .base import BaseRecognizer
@MODELS.register_module()
class EncodeDecodeRecognizer(BaseRecognizer):
"""Base class for encode-decode recognizer."""
"""Base class for encode-decode recognizer.
Args:
backbone (dict, optional): Backbone config. Defaults to None.
encoder (dict, optional): Encoder config. If None, the output from
backbone will be directly fed into ``decoder``. Defaults to None.
decoder (dict, optional): Decoder config. Defaults to None.
dictionary (dict, optional): Dictionary config. Defaults to None.
max_seq_len (int): Maximum sequence length. Defaults to 40.
preprocess_cfg (dict, optional): Model preprocessing config
for processing the input image data. Keys allowed are
``to_rgb``(bool), ``pad_size_divisor``(int), ``pad_value``(int or
float), ``mean``(int or float) and ``std``(int or float).
Preprcessing order: 1. to rgb; 2. normalization 3. pad.
Defaults to None.
init_cfg (dict or list[dict], optional): Initialization configs.
Defaults to None.
"""
def __init__(self,
preprocessor=None,
backbone=None,
encoder=None,
decoder=None,
loss=None,
label_convertor=None,
train_cfg=None,
test_cfg=None,
max_seq_len=40,
pretrained=None,
init_cfg=None):
preprocessor: Optional[Dict] = None,
backbone: Optional[Dict] = None,
encoder: Optional[Dict] = None,
decoder: Optional[Dict] = None,
dictionary: Optional[Dict] = None,
max_seq_len: int = 40,
preprocess_cfg: Dict = None,
init_cfg: Optional[Dict] = None) -> None:
super().__init__(init_cfg=init_cfg)
# Label convertor (str2tensor, tensor2str)
assert label_convertor is not None
label_convertor.update(max_seq_len=max_seq_len)
self.label_convertor = MODELS.build(label_convertor)
super().__init__(init_cfg=init_cfg, preprocess_cfg=preprocess_cfg)
# Preprocessor module, e.g., TPS
self.preprocessor = None
if preprocessor is not None:
self.preprocessor = MODELS.build(preprocessor)
# Backbone
assert backbone is not None
self.backbone = MODELS.build(backbone)
if backbone is not None:
self.backbone = MODELS.build(backbone)
# Encoder module
self.encoder = None
if encoder is not None:
self.encoder = MODELS.build(encoder)
# Dictionary
if dictionary is not None:
self.dictionary = TASK_UTILS.build(dictionary)
# Decoder module
assert decoder is not None
decoder.update(num_classes=self.label_convertor.num_classes())
decoder.update(start_idx=self.label_convertor.start_idx)
decoder.update(padding_idx=self.label_convertor.padding_idx)
decoder.update(max_seq_len=max_seq_len)
if self.with_dictionary:
if decoder.get('dictionary', None) is None:
decoder.update(dictionary=self.dictionary)
else:
warnings.warn(f"Using dictionary {decoder['dictionary']} "
"in decoder's config.")
if decoder.get('max_seq_len', None) is None:
decoder.update(max_seq_len=max_seq_len)
else:
warnings.warn(f"Using max_seq_len {decoder['max_seq_len']} "
"in decoder's config.")
self.decoder = MODELS.build(decoder)
# Loss
assert loss is not None
loss.update(ignore_index=self.label_convertor.padding_idx)
self.loss = MODELS.build(loss)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.max_seq_len = max_seq_len
if pretrained is not None:
warnings.warn('DeprecationWarning: pretrained is a deprecated \
key, please consider using init_cfg')
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
def extract_feat(self, img):
def extract_feat(self, inputs: torch.Tensor) -> torch.Tensor:
"""Directly extract features from the backbone."""
if self.preprocessor is not None:
img = self.preprocessor(img)
if self.with_preprocessor:
inputs = self.preprocessor(inputs)
if self.with_backbone:
inputs = self.backbone(inputs)
return inputs
x = self.backbone(img)
return x
def forward_train(self, img, img_metas):
def forward_train(self, inputs: torch.Tensor,
data_samples: Sequence[TextRecogDataSample],
**kwargs) -> Dict:
"""
Args:
img (tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
img_metas (list[dict]): A list of image info dict where each dict
contains: 'img_shape', 'filename', and may also contain
'ori_shape', and 'img_norm_cfg'.
For details on the values of these keys see
:class:`mmdet.datasets.pipelines.Collect`.
Args:
inputs (tensor): Input images of shape (N, C, H, W).
Typically these should be mean centered and std scaled.
data_samples (list[TextRecogDataSample]): A list of N
datasamples, containing meta information and gold
annotations for each of the images.
Returns:
dict[str, tensor]: A dictionary of loss components.
Returns:
dict[str, tensor]: A dictionary of loss components.
"""
for img_meta in img_metas:
valid_ratio = 1.0 * img_meta['resize_shape'][1] / img.size(-1)
img_meta['valid_ratio'] = valid_ratio
feat = self.extract_feat(img)
gt_labels = [img_meta['text'] for img_meta in img_metas]
targets_dict = self.label_convertor.str2tensor(gt_labels)
# TODO move to preprocess to update valid ratio
super().forward_train(inputs, data_samples, **kwargs)
for data_sample in data_samples:
valid_ratio = data_sample.valid_ratio * data_sample.img_shape[
1] / data_sample.batch_input_shape[1]
data_sample.set_metainfo(dict(valid_ratio=valid_ratio))
feat = self.extract_feat(inputs)
out_enc = None
if self.encoder is not None:
out_enc = self.encoder(feat, img_metas)
if self.with_encoder:
out_enc = self.encoder(feat, data_samples)
data_samples = self.decoder.loss.get_target(data_samples)
out_dec = self.decoder(feat, out_enc, data_samples, train_mode=True)
out_dec = self.decoder(
feat, out_enc, targets_dict, img_metas, train_mode=True)
loss_inputs = (
out_dec,
targets_dict,
img_metas,
)
losses = self.loss(*loss_inputs)
losses = self.decoder.loss(out_dec, data_samples)
return losses
def simple_test(self, img, img_metas, **kwargs):
"""Test function with test time augmentation.
def simple_test(self, inputs: torch.Tensor,
data_samples: Sequence[TextRecogDataSample],
**kwargs) -> Sequence[TextRecogDataSample]:
"""Test function without test-time augmentation.
Args:
imgs (torch.Tensor): Image input tensor.
img_metas (list[dict]): List of image information.
inputs (torch.Tensor): Image input tensor.
data_samples (list[TextRecogDataSample]): A list of N datasamples,
containing meta information and gold annotations for each of
the images.
Returns:
list[str]: Text label result of each image.
list[TextRecogDataSample]: A list of N datasamples of prediction
results. Results are stored in ``pred_text``.
"""
for img_meta in img_metas:
valid_ratio = 1.0 * img_meta['resize_shape'][1] / img.size(-1)
img_meta['valid_ratio'] = valid_ratio
feat = self.extract_feat(img)
# TODO move to preprocess to update valid ratio
for data_sample in data_samples:
valid_ratio = data_sample.valid_ratio * data_sample.img_shape[
1] / data_sample.batch_input_shape[1]
data_sample.set_metainfo(dict(valid_ratio=valid_ratio))
feat = self.extract_feat(inputs)
out_enc = None
if self.encoder is not None:
out_enc = self.encoder(feat, img_metas)
out_dec = self.decoder(
feat, out_enc, None, img_metas, train_mode=False)
# early return to avoid post processing
if torch.onnx.is_in_onnx_export():
return out_dec
label_indexes, label_scores = self.label_convertor.tensor2idx(
out_dec, img_metas)
label_strings = self.label_convertor.idx2str(label_indexes)
# flatten batch results
results = []
for string, score in zip(label_strings, label_scores):
results.append(dict(text=string, score=score))
return results
def merge_aug_results(self, aug_results):
out_text, out_score = '', -1
for result in aug_results:
text = result[0]['text']
score = sum(result[0]['score']) / max(1, len(text))
if score > out_score:
out_text = text
out_score = score
out_results = [dict(text=out_text, score=out_score)]
return out_results
def aug_test(self, imgs, img_metas, **kwargs):
"""Test function as well as time augmentation.
Args:
imgs (list[tensor]): Tensor should have shape NxCxHxW,
which contains all images in the batch.
img_metas (list[list[dict]]): The metadata of images.
"""
aug_results = []
for img, img_meta in zip(imgs, img_metas):
result = self.simple_test(img, img_meta, **kwargs)
aug_results.append(result)
return self.merge_aug_results(aug_results)
if self.with_encoder:
out_enc = self.encoder(feat, data_samples)
out_dec = self.decoder(feat, out_enc, data_samples, train_mode=False)
data_samples = self.decoder.postprocessor(out_dec, data_samples)
return data_samples