mirror of https://github.com/open-mmlab/mmocr.git
[Feature] Add RepeatAugSampler
parent
39f99ac720
commit
2089b02b48
|
@ -4,6 +4,7 @@ from .icdar_dataset import IcdarDataset
|
|||
from .ocr_dataset import OCRDataset
|
||||
from .recog_lmdb_dataset import RecogLMDBDataset
|
||||
from .recog_text_dataset import RecogTextDataset
|
||||
from .samplers import * # NOQA
|
||||
from .transforms import * # NOQA
|
||||
from .wildreceipt_dataset import WildReceiptDataset
|
||||
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .repeat_aug import RepeatAugSampler
|
||||
|
||||
__all__ = ['RepeatAugSampler']
|
|
@ -0,0 +1,100 @@
|
|||
import math
|
||||
from typing import Iterator, Optional, Sized
|
||||
|
||||
import torch
|
||||
from mmcls.registry import DATA_SAMPLERS
|
||||
from mmengine.dist import get_dist_info, is_main_process, sync_random_seed
|
||||
from torch.utils.data import Sampler
|
||||
|
||||
|
||||
@DATA_SAMPLERS.register_module()
|
||||
class RepeatAugSampler(Sampler):
|
||||
"""Sampler that restricts data loading to a subset of the dataset for
|
||||
distributed, with repeated augmentation. It ensures that different each
|
||||
augmented version of a sample will be visible to a different process (GPU).
|
||||
Heavily based on torch.utils.data.DistributedSampler.
|
||||
|
||||
This sampler was taken from
|
||||
https://github.com/facebookresearch/deit/blob/0c4b8f60/samplers.py
|
||||
Used in
|
||||
Copyright (c) 2015-present, Facebook, Inc.
|
||||
|
||||
Args:
|
||||
dataset (Sized): The dataset.
|
||||
shuffle (bool): Whether shuffle the dataset or not. Defaults to True.
|
||||
num_repeats (int): The repeat times of every sample. Defaults to 3.
|
||||
seed (int, optional): Random seed used to shuffle the sampler if
|
||||
:attr:`shuffle=True`. This number should be identical across all
|
||||
processes in the distributed group. Defaults to None.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dataset: Sized,
|
||||
shuffle: bool = True,
|
||||
num_repeats: int = 3,
|
||||
seed: Optional[int] = None):
|
||||
rank, world_size = get_dist_info()
|
||||
self.rank = rank
|
||||
self.world_size = world_size
|
||||
|
||||
self.dataset = dataset
|
||||
self.shuffle = shuffle
|
||||
if not self.shuffle and is_main_process():
|
||||
from mmengine.logging import MMLogger
|
||||
logger = MMLogger.get_current_instance()
|
||||
logger.warning('The RepeatAugSampler always picks a '
|
||||
'fixed part of data if `shuffle=False`.')
|
||||
|
||||
if seed is None:
|
||||
seed = sync_random_seed()
|
||||
self.seed = seed
|
||||
self.epoch = 0
|
||||
self.num_repeats = num_repeats
|
||||
|
||||
# The number of repeated samples in the rank
|
||||
self.num_samples = math.ceil(
|
||||
len(self.dataset) * num_repeats / world_size)
|
||||
# The total number of repeated samples in all ranks.
|
||||
self.total_size = self.num_samples * world_size
|
||||
# The number of selected samples in the rank
|
||||
self.num_selected_samples = math.ceil(len(self.dataset) / world_size)
|
||||
|
||||
def __iter__(self) -> Iterator[int]:
|
||||
"""Iterate the indices."""
|
||||
# deterministically shuffle based on epoch and seed
|
||||
if self.shuffle:
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.seed + self.epoch)
|
||||
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||||
else:
|
||||
indices = list(range(len(self.dataset)))
|
||||
|
||||
# produce repeats e.g. [0, 0, 0, 1, 1, 1, 2, 2, 2....]
|
||||
indices = [x for x in indices for _ in range(self.num_repeats)]
|
||||
# add extra samples to make it evenly divisible
|
||||
padding_size = self.total_size - len(indices)
|
||||
indices += indices[:padding_size]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample per rank
|
||||
indices = indices[self.rank:self.total_size:self.world_size]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
# return up to num selected samples
|
||||
return iter(indices[:self.num_selected_samples])
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""The number of samples in this rank."""
|
||||
return self.num_selected_samples
|
||||
|
||||
def set_epoch(self, epoch: int) -> None:
|
||||
"""Sets the epoch for this sampler.
|
||||
|
||||
When :attr:`shuffle=True`, this ensures all replicas use a different
|
||||
random ordering for each epoch. Otherwise, the next iteration of this
|
||||
sampler will yield the same ordering.
|
||||
|
||||
Args:
|
||||
epoch (int): Epoch number.
|
||||
"""
|
||||
self.epoch = epoch
|
|
@ -0,0 +1,98 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
|
||||
import math
|
||||
from unittest import TestCase
|
||||
from unittest.mock import patch
|
||||
|
||||
import torch
|
||||
from mmengine.logging import MMLogger
|
||||
|
||||
from mmocr.datasets import RepeatAugSampler
|
||||
|
||||
file = 'mmocr.datasets.samplers.repeat_aug.'
|
||||
|
||||
|
||||
class MockDist:
|
||||
|
||||
def __init__(self, dist_info=(0, 1), seed=7):
|
||||
self.dist_info = dist_info
|
||||
self.seed = seed
|
||||
|
||||
def get_dist_info(self):
|
||||
return self.dist_info
|
||||
|
||||
def sync_random_seed(self):
|
||||
return self.seed
|
||||
|
||||
def is_main_process(self):
|
||||
return self.dist_info[0] == 0
|
||||
|
||||
|
||||
class TestRepeatAugSampler(TestCase):
|
||||
|
||||
def setUp(self):
|
||||
self.data_length = 100
|
||||
self.dataset = list(range(self.data_length))
|
||||
|
||||
@patch(file + 'get_dist_info', return_value=(0, 1))
|
||||
def test_non_dist(self, mock):
|
||||
sampler = RepeatAugSampler(self.dataset, num_repeats=3, shuffle=False)
|
||||
self.assertEqual(sampler.world_size, 1)
|
||||
self.assertEqual(sampler.rank, 0)
|
||||
self.assertEqual(sampler.total_size, self.data_length * 3)
|
||||
self.assertEqual(sampler.num_samples, self.data_length * 3)
|
||||
self.assertEqual(sampler.num_selected_samples, self.data_length)
|
||||
self.assertEqual(len(sampler), sampler.num_selected_samples)
|
||||
indices = [x for x in range(self.data_length) for _ in range(3)]
|
||||
self.assertEqual(list(sampler), indices[:self.data_length])
|
||||
|
||||
logger = MMLogger.get_current_instance()
|
||||
with self.assertLogs(logger, 'WARN') as log:
|
||||
sampler = RepeatAugSampler(self.dataset, shuffle=False)
|
||||
self.assertIn('always picks a fixed part', log.output[0])
|
||||
|
||||
@patch(file + 'get_dist_info', return_value=(2, 3))
|
||||
@patch(file + 'is_main_process', return_value=False)
|
||||
def test_dist(self, mock1, mock2):
|
||||
sampler = RepeatAugSampler(self.dataset, num_repeats=3, shuffle=False)
|
||||
self.assertEqual(sampler.world_size, 3)
|
||||
self.assertEqual(sampler.rank, 2)
|
||||
self.assertEqual(sampler.num_samples, self.data_length)
|
||||
self.assertEqual(sampler.total_size, self.data_length * 3)
|
||||
self.assertEqual(sampler.num_selected_samples,
|
||||
math.ceil(self.data_length / 3))
|
||||
self.assertEqual(len(sampler), sampler.num_selected_samples)
|
||||
indices = [x for x in range(self.data_length) for _ in range(3)]
|
||||
self.assertEqual(
|
||||
list(sampler), indices[2::3][:sampler.num_selected_samples])
|
||||
|
||||
logger = MMLogger.get_current_instance()
|
||||
with patch.object(logger, 'warning') as mock_log:
|
||||
sampler = RepeatAugSampler(self.dataset, shuffle=False)
|
||||
mock_log.assert_not_called()
|
||||
|
||||
@patch(file + 'get_dist_info', return_value=(0, 1))
|
||||
@patch(file + 'sync_random_seed', return_value=7)
|
||||
def test_shuffle(self, mock1, mock2):
|
||||
# test seed=None
|
||||
sampler = RepeatAugSampler(self.dataset, seed=None)
|
||||
self.assertEqual(sampler.seed, 7)
|
||||
|
||||
# test random seed
|
||||
sampler = RepeatAugSampler(self.dataset, shuffle=True, seed=0)
|
||||
sampler.set_epoch(10)
|
||||
g = torch.Generator()
|
||||
g.manual_seed(10)
|
||||
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||||
indices = [x for x in indices
|
||||
for _ in range(3)][:sampler.num_selected_samples]
|
||||
self.assertEqual(list(sampler), indices)
|
||||
|
||||
sampler = RepeatAugSampler(self.dataset, shuffle=True, seed=42)
|
||||
sampler.set_epoch(10)
|
||||
g = torch.Generator()
|
||||
g.manual_seed(42 + 10)
|
||||
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
||||
indices = [x for x in indices
|
||||
for _ in range(3)][:sampler.num_selected_samples]
|
||||
self.assertEqual(list(sampler), indices)
|
Loading…
Reference in New Issue