[FCENet] Add FCENet config

pull/1178/head
jiangqing.vendor 2022-06-23 02:51:48 +00:00 committed by gaotongxiao
parent 0bf1ce88c2
commit 21b01344cc
1 changed files with 94 additions and 24 deletions

View File

@ -2,32 +2,102 @@ _base_ = [
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1500e.py',
'../../_base_/det_models/fcenet_r50_fpn.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/det_pipelines/fcenet_pipeline.py'
]
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
default_hooks = dict(
checkpoint=dict(type='CheckpointHook', interval=20),
logger=dict(type='LoggerHook', interval=20))
train_pipeline_icdar2015 = {{_base_.train_pipeline_icdar2015}}
test_pipeline_icdar2015 = {{_base_.test_pipeline_icdar2015}}
train_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True,
),
dict(
type='RandomResize',
scale=(800, 800),
ratio_range=(0.75, 2.5),
keep_ratio=True),
dict(
type='TextDetRandomCropFlip',
crop_ratio=0.5,
iter_num=1,
min_area_ratio=0.2),
dict(
type='RandomApply',
transforms=[dict(type='RandomCrop', min_side_ratio=0.3)],
prob=0.8),
dict(
type='RandomRotate',
max_angle=30,
pad_with_fixed_color=False,
use_canvas=True),
dict(
type='RandomChoice',
transforms=[[
dict(type='Resize', scale=800, keep_ratio=True),
dict(type='SourceImagePad', target_scale=800)
],
dict(type='Resize', scale=800, keep_ratio=False)],
prob=[0.6, 0.4]),
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=32.0 / 255,
saturation=0.5,
contrast=0.5),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
]
test_pipeline = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(type='Resize', scale=(2260, 2260), keep_ratio=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor',
'instances'))
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=train_list,
pipeline=train_pipeline_icdar2015),
val=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline_icdar2015),
test=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline_icdar2015))
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
evaluation = dict(interval=10, metric='hmean-iou')
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')
test_evaluator = val_evaluator
visualizer = dict(
type='TextDetLocalVisualizer', name='visualizer', save_dir='imgs')