mirror of https://github.com/open-mmlab/mmocr.git
[FCENet] Add FCENet config
parent
0bf1ce88c2
commit
21b01344cc
|
@ -2,32 +2,102 @@ _base_ = [
|
|||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_sgd_1500e.py',
|
||||
'../../_base_/det_models/fcenet_r50_fpn.py',
|
||||
'../../_base_/det_datasets/icdar2015.py',
|
||||
'../../_base_/det_pipelines/fcenet_pipeline.py'
|
||||
]
|
||||
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(type='CheckpointHook', interval=20),
|
||||
logger=dict(type='LoggerHook', interval=20))
|
||||
|
||||
train_pipeline_icdar2015 = {{_base_.train_pipeline_icdar2015}}
|
||||
test_pipeline_icdar2015 = {{_base_.test_pipeline_icdar2015}}
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(
|
||||
type='LoadOCRAnnotations',
|
||||
with_polygon=True,
|
||||
with_bbox=True,
|
||||
with_label=True,
|
||||
),
|
||||
dict(
|
||||
type='RandomResize',
|
||||
scale=(800, 800),
|
||||
ratio_range=(0.75, 2.5),
|
||||
keep_ratio=True),
|
||||
dict(
|
||||
type='TextDetRandomCropFlip',
|
||||
crop_ratio=0.5,
|
||||
iter_num=1,
|
||||
min_area_ratio=0.2),
|
||||
dict(
|
||||
type='RandomApply',
|
||||
transforms=[dict(type='RandomCrop', min_side_ratio=0.3)],
|
||||
prob=0.8),
|
||||
dict(
|
||||
type='RandomRotate',
|
||||
max_angle=30,
|
||||
pad_with_fixed_color=False,
|
||||
use_canvas=True),
|
||||
dict(
|
||||
type='RandomChoice',
|
||||
transforms=[[
|
||||
dict(type='Resize', scale=800, keep_ratio=True),
|
||||
dict(type='SourceImagePad', target_scale=800)
|
||||
],
|
||||
dict(type='Resize', scale=800, keep_ratio=False)],
|
||||
prob=[0.6, 0.4]),
|
||||
dict(type='RandomFlip', prob=0.5, direction='horizontal'),
|
||||
dict(
|
||||
type='TorchVisionWrapper',
|
||||
op='ColorJitter',
|
||||
brightness=32.0 / 255,
|
||||
saturation=0.5,
|
||||
contrast=0.5),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
||||
]
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
|
||||
dict(type='Resize', scale=(2260, 2260), keep_ratio=True),
|
||||
dict(
|
||||
type='PackTextDetInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor',
|
||||
'instances'))
|
||||
]
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=8,
|
||||
workers_per_gpu=2,
|
||||
val_dataloader=dict(samples_per_gpu=1),
|
||||
test_dataloader=dict(samples_per_gpu=1),
|
||||
train=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=train_list,
|
||||
pipeline=train_pipeline_icdar2015),
|
||||
val=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline_icdar2015),
|
||||
test=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline_icdar2015))
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'data/icdar2015'
|
||||
|
||||
evaluation = dict(interval=10, metric='hmean-iou')
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_training.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
filter_cfg=dict(filter_empty_gt=True, min_size=32),
|
||||
pipeline=train_pipeline)
|
||||
|
||||
test_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
ann_file='instances_test.json',
|
||||
data_prefix=dict(img_path='imgs/'),
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = dict(type='HmeanIOUMetric')
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
visualizer = dict(
|
||||
type='TextDetLocalVisualizer', name='visualizer', save_dir='imgs')
|
||||
|
|
Loading…
Reference in New Issue