mirror of https://github.com/open-mmlab/mmocr.git
[SATRN] SATRN Config
parent
b44869059b
commit
3992f0d78e
|
@ -1,11 +1,17 @@
|
|||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT36', with_unknown=True, lower=True)
|
||||
dictionary = dict(
|
||||
type='Dictionary',
|
||||
dict_file='dicts/english_digits_symbols.txt',
|
||||
with_padding=True,
|
||||
with_unknown=True,
|
||||
same_start_end=True,
|
||||
with_start=True,
|
||||
with_end=True)
|
||||
|
||||
model = dict(
|
||||
type='SATRN',
|
||||
backbone=dict(type='ShallowCNN'),
|
||||
encoder=dict(type='SatrnEncoder'),
|
||||
decoder=dict(type='TFDecoder'),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=40)
|
||||
encoder=dict(type='SATRNEncoder'),
|
||||
decoder=dict(type='NRTRDecoder', loss=dict(type='CELoss')),
|
||||
dictionary=dictionary,
|
||||
preprocess_cfg=dict(
|
||||
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375]))
|
||||
|
|
|
@ -1,24 +1,21 @@
|
|||
_base_ = [
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/recog_pipelines/satrn_pipeline.py',
|
||||
'../../_base_/recog_datasets/ST_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py'
|
||||
'../../_base_/schedules/schedule_adam_step_5e.py',
|
||||
'../../_base_/recog_models/satrn.py'
|
||||
]
|
||||
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
train_pipeline = {{_base_.train_pipeline}}
|
||||
test_pipeline = {{_base_.test_pipeline}}
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
# dataset settings
|
||||
dataset_type = 'OCRDataset'
|
||||
data_root = 'tests/data/ocr_toy_dataset'
|
||||
file_client_args = dict(backend='petrel')
|
||||
|
||||
model = dict(
|
||||
type='SATRN',
|
||||
backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=512),
|
||||
encoder=dict(
|
||||
type='SatrnEncoder',
|
||||
type='SATRNEncoder',
|
||||
n_layers=12,
|
||||
n_head=8,
|
||||
d_k=512 // 8,
|
||||
|
@ -35,34 +32,65 @@ model = dict(
|
|||
d_model=512,
|
||||
d_inner=512 * 4,
|
||||
d_k=512 // 8,
|
||||
d_v=512 // 8),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=25)
|
||||
d_v=512 // 8,
|
||||
loss=dict(type='CELoss', flatten=True, ignore_first_char=True),
|
||||
max_seq_len=25,
|
||||
postprocessor=dict(type='AttentionPostprocessor')))
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=3e-4)
|
||||
optimizer_config = dict(grad_clip=None)
|
||||
# learning policy
|
||||
lr_config = dict(policy='step', step=[3, 4])
|
||||
total_epochs = 6
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=64,
|
||||
workers_per_gpu=4,
|
||||
val_dataloader=dict(samples_per_gpu=1),
|
||||
test_dataloader=dict(samples_per_gpu=1),
|
||||
train=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=train_list,
|
||||
pipeline=train_pipeline),
|
||||
val=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline),
|
||||
test=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=test_list,
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(type='Resize', scale=(100, 32), keep_ratio=False),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
# TODO Add Test Time Augmentation `MultiRotateAugOCR`
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(type='Resize', scale=(100, 32), keep_ratio=False),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio',
|
||||
'instances'))
|
||||
]
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=64,
|
||||
num_workers=8,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='train_label.json',
|
||||
pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=64,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_prefix=dict(img_path=None),
|
||||
ann_file='test_label.json',
|
||||
test_mode=True,
|
||||
pipeline=test_pipeline))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
evaluation = dict(interval=1, metric='acc')
|
||||
val_evaluator = [
|
||||
dict(
|
||||
type='WordMetric', mode=['exact', 'ignore_case',
|
||||
'ignore_case_symbol']),
|
||||
dict(type='CharMetric')
|
||||
]
|
||||
test_evaluator = val_evaluator
|
||||
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')
|
||||
|
|
|
@ -1,24 +1,9 @@
|
|||
_base_ = [
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/recog_pipelines/satrn_pipeline.py',
|
||||
'../../_base_/recog_datasets/ST_MJ_train.py',
|
||||
'../../_base_/recog_datasets/academic_test.py'
|
||||
]
|
||||
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
|
||||
train_pipeline = {{_base_.train_pipeline}}
|
||||
test_pipeline = {{_base_.test_pipeline}}
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
_base_ = ['satrn_academic.py']
|
||||
|
||||
model = dict(
|
||||
type='SATRN',
|
||||
backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=256),
|
||||
encoder=dict(
|
||||
type='SatrnEncoder',
|
||||
type='SATRNEncoder',
|
||||
n_layers=6,
|
||||
n_head=8,
|
||||
d_k=256 // 8,
|
||||
|
@ -35,34 +20,4 @@ model = dict(
|
|||
d_model=256,
|
||||
d_inner=256 * 4,
|
||||
d_k=256 // 8,
|
||||
d_v=256 // 8),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=25)
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=3e-4)
|
||||
optimizer_config = dict(grad_clip=None)
|
||||
# learning policy
|
||||
lr_config = dict(policy='step', step=[3, 4])
|
||||
total_epochs = 6
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=64,
|
||||
workers_per_gpu=4,
|
||||
val_dataloader=dict(samples_per_gpu=1),
|
||||
test_dataloader=dict(samples_per_gpu=1),
|
||||
train=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=train_list,
|
||||
pipeline=train_pipeline),
|
||||
val=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline),
|
||||
test=dict(
|
||||
type='UniformConcatDataset',
|
||||
datasets=test_list,
|
||||
pipeline=test_pipeline))
|
||||
|
||||
evaluation = dict(interval=1, metric='acc')
|
||||
d_v=256 // 8))
|
||||
|
|
Loading…
Reference in New Issue