[Feature] textspotting datasample (#1593)

* textspotting datasample

* rename
pull/1604/head
liukuikun 2022-12-06 14:03:32 +08:00 committed by GitHub
parent 9ac9a227ec
commit 3a0aa05d9c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 154 additions and 1 deletions

View File

@ -2,5 +2,9 @@
from .kie_data_sample import KIEDataSample
from .textdet_data_sample import TextDetDataSample
from .textrecog_data_sample import TextRecogDataSample
from .textspotting_data_sample import TextSpottingDataSample
__all__ = ['TextDetDataSample', 'TextRecogDataSample', 'KIEDataSample']
__all__ = [
'TextDetDataSample', 'TextRecogDataSample', 'KIEDataSample',
'TextSpottingDataSample'
]

View File

@ -0,0 +1,64 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmocr.structures import TextDetDataSample
class TextSpottingDataSample(TextDetDataSample):
"""A data structure interface of MMOCR. They are used as interfaces between
different components.
The attributes in ``TextSpottingDataSample`` are divided into two parts:
- ``gt_instances``(InstanceData): Ground truth of instance annotations.
- ``pred_instances``(InstanceData): Instances of model predictions.
Examples:
>>> import torch
>>> import numpy as np
>>> from mmengine.structures import InstanceData
>>> from mmocr.data import TextSpottingDataSample
>>> # gt_instances
>>> data_sample = TextSpottingDataSample()
>>> img_meta = dict(img_shape=(800, 1196, 3),
... pad_shape=(800, 1216, 3))
>>> gt_instances = InstanceData(metainfo=img_meta)
>>> gt_instances.bboxes = torch.rand((5, 4))
>>> gt_instances.labels = torch.rand((5,))
>>> data_sample.gt_instances = gt_instances
>>> assert 'img_shape' in data_sample.gt_instances.metainfo_keys()
>>> len(data_sample.gt_instances)
5
>>> print(data_sample)
<TextSpottingDataSample(
META INFORMATION
DATA FIELDS
gt_instances: <InstanceData(
META INFORMATION
pad_shape: (800, 1216, 3)
img_shape: (800, 1196, 3)
DATA FIELDS
labels: tensor([0.8533, 0.1550, 0.5433, 0.7294, 0.5098])
bboxes:
tensor([[9.7725e-01, 5.8417e-01, 1.7269e-01, 6.5694e-01],
[1.7894e-01, 5.1780e-01, 7.0590e-01, 4.8589e-01],
[7.0392e-01, 6.6770e-01, 1.7520e-01, 1.4267e-01],
[2.2411e-01, 5.1962e-01, 9.6953e-01, 6.6994e-01],
[4.1338e-01, 2.1165e-01, 2.7239e-04, 6.8477e-01]])
) at 0x7f21fb1b9190>
) at 0x7f21fb1b9880>
>>> # pred_instances
>>> pred_instances = InstanceData(metainfo=img_meta)
>>> pred_instances.bboxes = torch.rand((5, 4))
>>> pred_instances.scores = torch.rand((5,))
>>> data_sample = TextSpottingDataSample(
... pred_instances=pred_instances)
>>> assert 'pred_instances' in data_sample
>>> data_sample = TextSpottingDataSample()
>>> gt_instances_data = dict(
... bboxes=torch.rand(2, 4),
... labels=torch.rand(2),
... masks=np.random.rand(2, 2, 2))
>>> gt_instances = InstanceData(**gt_instances_data)
>>> data_sample.gt_instances = gt_instances
>>> assert 'gt_instances' in data_sample
>>> assert 'masks' in data_sample.gt_instances
"""

View File

@ -0,0 +1,85 @@
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
import torch
from mmengine.structures import InstanceData
from mmocr.structures import TextSpottingDataSample
class TestTextSpottingDataSample(TestCase):
def _equal(self, a, b):
if isinstance(a, (torch.Tensor, np.ndarray)):
return (a == b).all()
else:
return a == b
def test_init(self):
meta_info = dict(
img_size=[256, 256],
scale_factor=np.array([1.5, 1.5]),
img_shape=torch.rand(4))
e2e_data_sample = TextSpottingDataSample(metainfo=meta_info)
assert 'img_size' in e2e_data_sample
self.assertListEqual(e2e_data_sample.img_size, [256, 256])
self.assertListEqual(e2e_data_sample.get('img_size'), [256, 256])
def test_setter(self):
e2e_data_sample = TextSpottingDataSample()
# test gt_instances
gt_instances_data = dict(
bboxes=torch.rand(4, 4),
labels=torch.rand(4),
masks=np.random.rand(4, 2, 2))
gt_instances = InstanceData(**gt_instances_data)
e2e_data_sample.gt_instances = gt_instances
assert 'gt_instances' in e2e_data_sample
assert self._equal(e2e_data_sample.gt_instances.bboxes,
gt_instances_data['bboxes'])
assert self._equal(e2e_data_sample.gt_instances.labels,
gt_instances_data['labels'])
assert self._equal(e2e_data_sample.gt_instances.masks,
gt_instances_data['masks'])
# test pred_instances
pred_instances_data = dict(
bboxes=torch.rand(2, 4),
labels=torch.rand(2),
masks=np.random.rand(2, 2, 2))
pred_instances = InstanceData(**pred_instances_data)
e2e_data_sample.pred_instances = pred_instances
assert 'pred_instances' in e2e_data_sample
assert self._equal(e2e_data_sample.pred_instances.bboxes,
pred_instances_data['bboxes'])
assert self._equal(e2e_data_sample.pred_instances.labels,
pred_instances_data['labels'])
assert self._equal(e2e_data_sample.pred_instances.masks,
pred_instances_data['masks'])
# test type error
with self.assertRaises(AssertionError):
e2e_data_sample.gt_instances = torch.rand(2, 4)
with self.assertRaises(AssertionError):
e2e_data_sample.pred_instances = torch.rand(2, 4)
def test_deleter(self):
gt_instances_data = dict(
bboxes=torch.rand(4, 4),
labels=torch.rand(4),
masks=np.random.rand(4, 2, 2))
e2e_data_sample = TextSpottingDataSample()
gt_instances = InstanceData(data=gt_instances_data)
e2e_data_sample.gt_instances = gt_instances
assert 'gt_instances' in e2e_data_sample
del e2e_data_sample.gt_instances
assert 'gt_instances' not in e2e_data_sample
e2e_data_sample.pred_instances = gt_instances
assert 'pred_instances' in e2e_data_sample
del e2e_data_sample.pred_instances
assert 'pred_instances' not in e2e_data_sample