mirror of https://github.com/open-mmlab/mmocr.git
parent
9ac9a227ec
commit
3a0aa05d9c
|
@ -2,5 +2,9 @@
|
|||
from .kie_data_sample import KIEDataSample
|
||||
from .textdet_data_sample import TextDetDataSample
|
||||
from .textrecog_data_sample import TextRecogDataSample
|
||||
from .textspotting_data_sample import TextSpottingDataSample
|
||||
|
||||
__all__ = ['TextDetDataSample', 'TextRecogDataSample', 'KIEDataSample']
|
||||
__all__ = [
|
||||
'TextDetDataSample', 'TextRecogDataSample', 'KIEDataSample',
|
||||
'TextSpottingDataSample'
|
||||
]
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from mmocr.structures import TextDetDataSample
|
||||
|
||||
|
||||
class TextSpottingDataSample(TextDetDataSample):
|
||||
"""A data structure interface of MMOCR. They are used as interfaces between
|
||||
different components.
|
||||
|
||||
The attributes in ``TextSpottingDataSample`` are divided into two parts:
|
||||
|
||||
- ``gt_instances``(InstanceData): Ground truth of instance annotations.
|
||||
- ``pred_instances``(InstanceData): Instances of model predictions.
|
||||
|
||||
Examples:
|
||||
>>> import torch
|
||||
>>> import numpy as np
|
||||
>>> from mmengine.structures import InstanceData
|
||||
>>> from mmocr.data import TextSpottingDataSample
|
||||
>>> # gt_instances
|
||||
>>> data_sample = TextSpottingDataSample()
|
||||
>>> img_meta = dict(img_shape=(800, 1196, 3),
|
||||
... pad_shape=(800, 1216, 3))
|
||||
>>> gt_instances = InstanceData(metainfo=img_meta)
|
||||
>>> gt_instances.bboxes = torch.rand((5, 4))
|
||||
>>> gt_instances.labels = torch.rand((5,))
|
||||
>>> data_sample.gt_instances = gt_instances
|
||||
>>> assert 'img_shape' in data_sample.gt_instances.metainfo_keys()
|
||||
>>> len(data_sample.gt_instances)
|
||||
5
|
||||
>>> print(data_sample)
|
||||
<TextSpottingDataSample(
|
||||
META INFORMATION
|
||||
DATA FIELDS
|
||||
gt_instances: <InstanceData(
|
||||
META INFORMATION
|
||||
pad_shape: (800, 1216, 3)
|
||||
img_shape: (800, 1196, 3)
|
||||
DATA FIELDS
|
||||
labels: tensor([0.8533, 0.1550, 0.5433, 0.7294, 0.5098])
|
||||
bboxes:
|
||||
tensor([[9.7725e-01, 5.8417e-01, 1.7269e-01, 6.5694e-01],
|
||||
[1.7894e-01, 5.1780e-01, 7.0590e-01, 4.8589e-01],
|
||||
[7.0392e-01, 6.6770e-01, 1.7520e-01, 1.4267e-01],
|
||||
[2.2411e-01, 5.1962e-01, 9.6953e-01, 6.6994e-01],
|
||||
[4.1338e-01, 2.1165e-01, 2.7239e-04, 6.8477e-01]])
|
||||
) at 0x7f21fb1b9190>
|
||||
) at 0x7f21fb1b9880>
|
||||
>>> # pred_instances
|
||||
>>> pred_instances = InstanceData(metainfo=img_meta)
|
||||
>>> pred_instances.bboxes = torch.rand((5, 4))
|
||||
>>> pred_instances.scores = torch.rand((5,))
|
||||
>>> data_sample = TextSpottingDataSample(
|
||||
... pred_instances=pred_instances)
|
||||
>>> assert 'pred_instances' in data_sample
|
||||
>>> data_sample = TextSpottingDataSample()
|
||||
>>> gt_instances_data = dict(
|
||||
... bboxes=torch.rand(2, 4),
|
||||
... labels=torch.rand(2),
|
||||
... masks=np.random.rand(2, 2, 2))
|
||||
>>> gt_instances = InstanceData(**gt_instances_data)
|
||||
>>> data_sample.gt_instances = gt_instances
|
||||
>>> assert 'gt_instances' in data_sample
|
||||
>>> assert 'masks' in data_sample.gt_instances
|
||||
"""
|
|
@ -0,0 +1,85 @@
|
|||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from unittest import TestCase
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from mmengine.structures import InstanceData
|
||||
|
||||
from mmocr.structures import TextSpottingDataSample
|
||||
|
||||
|
||||
class TestTextSpottingDataSample(TestCase):
|
||||
|
||||
def _equal(self, a, b):
|
||||
if isinstance(a, (torch.Tensor, np.ndarray)):
|
||||
return (a == b).all()
|
||||
else:
|
||||
return a == b
|
||||
|
||||
def test_init(self):
|
||||
meta_info = dict(
|
||||
img_size=[256, 256],
|
||||
scale_factor=np.array([1.5, 1.5]),
|
||||
img_shape=torch.rand(4))
|
||||
|
||||
e2e_data_sample = TextSpottingDataSample(metainfo=meta_info)
|
||||
assert 'img_size' in e2e_data_sample
|
||||
|
||||
self.assertListEqual(e2e_data_sample.img_size, [256, 256])
|
||||
self.assertListEqual(e2e_data_sample.get('img_size'), [256, 256])
|
||||
|
||||
def test_setter(self):
|
||||
e2e_data_sample = TextSpottingDataSample()
|
||||
# test gt_instances
|
||||
gt_instances_data = dict(
|
||||
bboxes=torch.rand(4, 4),
|
||||
labels=torch.rand(4),
|
||||
masks=np.random.rand(4, 2, 2))
|
||||
gt_instances = InstanceData(**gt_instances_data)
|
||||
e2e_data_sample.gt_instances = gt_instances
|
||||
assert 'gt_instances' in e2e_data_sample
|
||||
assert self._equal(e2e_data_sample.gt_instances.bboxes,
|
||||
gt_instances_data['bboxes'])
|
||||
assert self._equal(e2e_data_sample.gt_instances.labels,
|
||||
gt_instances_data['labels'])
|
||||
assert self._equal(e2e_data_sample.gt_instances.masks,
|
||||
gt_instances_data['masks'])
|
||||
|
||||
# test pred_instances
|
||||
pred_instances_data = dict(
|
||||
bboxes=torch.rand(2, 4),
|
||||
labels=torch.rand(2),
|
||||
masks=np.random.rand(2, 2, 2))
|
||||
pred_instances = InstanceData(**pred_instances_data)
|
||||
e2e_data_sample.pred_instances = pred_instances
|
||||
assert 'pred_instances' in e2e_data_sample
|
||||
assert self._equal(e2e_data_sample.pred_instances.bboxes,
|
||||
pred_instances_data['bboxes'])
|
||||
assert self._equal(e2e_data_sample.pred_instances.labels,
|
||||
pred_instances_data['labels'])
|
||||
assert self._equal(e2e_data_sample.pred_instances.masks,
|
||||
pred_instances_data['masks'])
|
||||
|
||||
# test type error
|
||||
with self.assertRaises(AssertionError):
|
||||
e2e_data_sample.gt_instances = torch.rand(2, 4)
|
||||
with self.assertRaises(AssertionError):
|
||||
e2e_data_sample.pred_instances = torch.rand(2, 4)
|
||||
|
||||
def test_deleter(self):
|
||||
gt_instances_data = dict(
|
||||
bboxes=torch.rand(4, 4),
|
||||
labels=torch.rand(4),
|
||||
masks=np.random.rand(4, 2, 2))
|
||||
|
||||
e2e_data_sample = TextSpottingDataSample()
|
||||
gt_instances = InstanceData(data=gt_instances_data)
|
||||
e2e_data_sample.gt_instances = gt_instances
|
||||
assert 'gt_instances' in e2e_data_sample
|
||||
del e2e_data_sample.gt_instances
|
||||
assert 'gt_instances' not in e2e_data_sample
|
||||
|
||||
e2e_data_sample.pred_instances = gt_instances
|
||||
assert 'pred_instances' in e2e_data_sample
|
||||
del e2e_data_sample.pred_instances
|
||||
assert 'pred_instances' not in e2e_data_sample
|
Loading…
Reference in New Issue