remove some deprecated files causing import errors

This commit is contained in:
gaotongxiao 2022-05-11 14:33:29 +08:00
parent 13bd2837ae
commit 3f24e34a5d
4 changed files with 60 additions and 127 deletions

View File

@ -1,23 +1,24 @@
# Copyright (c) OpenMMLab. All rights reserved.
from . import utils
from .base_dataset import BaseDataset
from .builder import DATASETS, LOADERS, PARSERS, TRANSFORMS
from .builder import LOADERS, PARSERS, TRANSFORMS
from .icdar_dataset import IcdarDataset
# TODO: check this
from .kie_dataset import KIEDataset
from .ner_dataset import NerDataset
from .ocr_dataset import OCRDataset
from .ocr_seg_dataset import OCRSegDataset
from .openset_kie_dataset import OpensetKIEDataset
from .pipelines import CustomFormatBundle, DBNetTargets, FCENetTargets
from .pipelines import DBNetTargets, FCENetTargets
from .text_det_dataset import TextDetDataset
from .uniform_concat_dataset import UniformConcatDataset
from .utils import * # NOQA
__all__ = [
'DATASETS', 'IcdarDataset', 'BaseDataset', 'OCRDataset', 'TextDetDataset',
'CustomFormatBundle', 'DBNetTargets', 'OCRSegDataset', 'KIEDataset',
'FCENetTargets', 'NerDataset', 'UniformConcatDataset', 'OpensetKIEDataset',
'TRANSFORMS', 'PARSERS', 'LOADERS'
'IcdarDataset', 'BaseDataset', 'OCRDataset', 'TextDetDataset',
'KIEDataset', 'DBNetTargets', 'OCRSegDataset', 'FCENetTargets',
'NerDataset', 'UniformConcatDataset', 'OpensetKIEDataset', 'TRANSFORMS',
'PARSERS', 'LOADERS'
]
__all__ += utils.__all__

View File

@ -1,8 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .box_utils import sort_vertex, sort_vertex8
from .custom_format_bundle import CustomFormatBundle
from .dbnet_transforms import EastRandomCrop, ImgAug
from .kie_transforms import KIEFormatBundle, ResizeNoImg
from .kie_transforms import ResizeNoImg
from .loading import (LoadImageFromLMDB, LoadImageFromNdarray,
LoadTextAnnotations)
from .ner_transforms import NerTransform, ToTensorNER
@ -21,14 +20,14 @@ from .transforms import (ColorJitter, PyramidRescale, RandomCropFlip,
__all__ = [
'LoadTextAnnotations', 'NormalizeOCR', 'OnlineCropOCR', 'ResizeOCR',
'ToTensorOCR', 'CustomFormatBundle', 'DBNetTargets', 'PANetTargets',
'ColorJitter', 'RandomCropInstances', 'RandomRotateTextDet',
'ScaleAspectJitter', 'MultiRotateAugOCR', 'OCRSegTargets', 'FancyPCA',
'ToTensorOCR', 'DBNetTargets', 'PANetTargets', 'ColorJitter',
'RandomCropInstances', 'RandomRotateTextDet', 'ScaleAspectJitter',
'MultiRotateAugOCR', 'OCRSegTargets', 'FancyPCA',
'RandomCropPolyInstances', 'RandomRotatePolyInstances', 'RandomPaddingOCR',
'ImgAug', 'EastRandomCrop', 'RandomRotateImageBox', 'OpencvToPil',
'PilToOpencv', 'KIEFormatBundle', 'SquareResizePad', 'TextSnakeTargets',
'sort_vertex', 'LoadImageFromNdarray', 'sort_vertex8', 'FCENetTargets',
'RandomScaling', 'RandomCropFlip', 'NerTransform', 'ToTensorNER',
'ResizeNoImg', 'PyramidRescale', 'OneOfWrapper', 'RandomWrapper',
'TorchVisionWrapper', 'LoadImageFromLMDB'
'PilToOpencv', 'SquareResizePad', 'TextSnakeTargets', 'sort_vertex',
'LoadImageFromNdarray', 'sort_vertex8', 'FCENetTargets', 'RandomScaling',
'RandomCropFlip', 'NerTransform', 'ToTensorNER', 'ResizeNoImg',
'PyramidRescale', 'OneOfWrapper', 'RandomWrapper', 'TorchVisionWrapper',
'LoadImageFromLMDB'
]

View File

@ -1,66 +0,0 @@
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv.parallel import DataContainer as DC
from mmdet.datasets.pipelines.formatting import DefaultFormatBundle
from mmocr.core.visualize import overlay_mask_img, show_feature
from mmocr.registry import TRANSFORMS
@TRANSFORMS.register_module()
class CustomFormatBundle(DefaultFormatBundle):
"""Custom formatting bundle.
It formats common fields such as 'img' and 'proposals' as done in
DefaultFormatBundle, while other fields such as 'gt_kernels' and
'gt_effective_region_mask' will be formatted to DC as follows:
- gt_kernels: to DataContainer (cpu_only=True)
- gt_effective_mask: to DataContainer (cpu_only=True)
Args:
keys (list[str]): Fields to be formatted to DC only.
call_super (bool): If True, format common fields
by DefaultFormatBundle, else format fields in keys above only.
visualize (dict): If flag=True, visualize gt mask for debugging.
"""
def __init__(self,
keys=[],
call_super=True,
visualize=dict(flag=False, boundary_key=None)):
super().__init__()
self.visualize = visualize
self.keys = keys
self.call_super = call_super
def __call__(self, results):
if self.visualize['flag']:
img = results['img'].astype(np.uint8)
boundary_key = self.visualize['boundary_key']
if boundary_key is not None:
img = overlay_mask_img(img, results[boundary_key].masks[0])
features = [img]
names = ['img']
to_uint8 = [1]
for k in results['mask_fields']:
for iter in range(len(results[k].masks)):
features.append(results[k].masks[iter])
names.append(k + str(iter))
to_uint8.append(0)
show_feature(features, names, to_uint8)
if self.call_super:
results = super().__call__(results)
for k in self.keys:
results[k] = DC(results[k], cpu_only=True)
return results
def __repr__(self):
return self.__class__.__name__

View File

@ -1,8 +1,6 @@
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv import rescale_size
from mmcv.parallel import DataContainer as DC
from mmdet.datasets.pipelines.formatting import DefaultFormatBundle, to_tensor
from mmocr.registry import TRANSFORMS
@ -40,52 +38,53 @@ class ResizeNoImg:
return results
@TRANSFORMS.register_module()
class KIEFormatBundle(DefaultFormatBundle):
"""Key information extraction formatting bundle.
# @TRANSFORMS.register_module()
# class KIEFormatBundle(DefaultFormatBundle):
# """Key information extraction formatting bundle.
Based on the DefaultFormatBundle, itt simplifies the pipeline of formatting
common fields, including "img", "proposals", "gt_bboxes", "gt_labels",
"gt_masks", "gt_semantic_seg", "relations" and "texts".
These fields are formatted as follows.
# Based on the DefaultFormatBundle, itt simplifies the pipeline of
# formatting
# common fields, including "img", "proposals", "gt_bboxes", "gt_labels",
# "gt_masks", "gt_semantic_seg", "relations" and "texts".
# These fields are formatted as follows.
- img: (1) transpose, (2) to tensor, (3) to DataContainer (stack=True)
- proposals: (1) to tensor, (2) to DataContainer
- gt_bboxes: (1) to tensor, (2) to DataContainer
- gt_bboxes_ignore: (1) to tensor, (2) to DataContainer
- gt_labels: (1) to tensor, (2) to DataContainer
- gt_masks: (1) to tensor, (2) to DataContainer (cpu_only=True)
- gt_semantic_seg: (1) unsqueeze dim-0 (2) to tensor,
(3) to DataContainer (stack=True)
- relations: (1) scale, (2) to tensor, (3) to DataContainer
- texts: (1) to tensor, (2) to DataContainer
"""
# - img: (1) transpose, (2) to tensor, (3) to DataContainer (stack=True)
# - proposals: (1) to tensor, (2) to DataContainer
# - gt_bboxes: (1) to tensor, (2) to DataContainer
# - gt_bboxes_ignore: (1) to tensor, (2) to DataContainer
# - gt_labels: (1) to tensor, (2) to DataContainer
# - gt_masks: (1) to tensor, (2) to DataContainer (cpu_only=True)
# - gt_semantic_seg: (1) unsqueeze dim-0 (2) to tensor,
# (3) to DataContainer (stack=True)
# - relations: (1) scale, (2) to tensor, (3) to DataContainer
# - texts: (1) to tensor, (2) to DataContainer
# """
def __call__(self, results):
"""Call function to transform and format common fields in results.
# def __call__(self, results):
# """Call function to transform and format common fields in results.
Args:
results (dict): Result dict contains the data to convert.
# Args:
# results (dict): Result dict contains the data to convert.
Returns:
dict: The result dict contains the data that is formatted with
default bundle.
"""
super().__call__(results)
if 'ann_info' in results:
for key in ['relations', 'texts']:
value = results['ann_info'][key]
if key == 'relations' and 'scale_factor' in results:
scale_factor = results['scale_factor']
if isinstance(scale_factor, float):
sx = sy = scale_factor
else:
sx, sy = results['scale_factor'][:2]
r = sx / sy
factor = np.array([sx, sy, r, 1, r]).astype(np.float32)
value = value * factor[None, None]
results[key] = DC(to_tensor(value))
return results
# Returns:
# dict: The result dict contains the data that is formatted with
# default bundle.
# """
# super().__call__(results)
# if 'ann_info' in results:
# for key in ['relations', 'texts']:
# value = results['ann_info'][key]
# if key == 'relations' and 'scale_factor' in results:
# scale_factor = results['scale_factor']
# if isinstance(scale_factor, float):
# sx = sy = scale_factor
# else:
# sx, sy = results['scale_factor'][:2]
# r = sx / sy
# factor = np.array([sx, sy, r, 1, r]).astype(np.float32)
# value = value * factor[None, None]
# results[key] = DC(to_tensor(value))
# return results
def __repr__(self):
return self.__class__.__name__
# def __repr__(self):
# return self.__class__.__name__