mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
remove some deprecated files causing import errors
This commit is contained in:
parent
13bd2837ae
commit
3f24e34a5d
@ -1,23 +1,24 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from . import utils
|
||||
from .base_dataset import BaseDataset
|
||||
from .builder import DATASETS, LOADERS, PARSERS, TRANSFORMS
|
||||
from .builder import LOADERS, PARSERS, TRANSFORMS
|
||||
from .icdar_dataset import IcdarDataset
|
||||
# TODO: check this
|
||||
from .kie_dataset import KIEDataset
|
||||
from .ner_dataset import NerDataset
|
||||
from .ocr_dataset import OCRDataset
|
||||
from .ocr_seg_dataset import OCRSegDataset
|
||||
from .openset_kie_dataset import OpensetKIEDataset
|
||||
from .pipelines import CustomFormatBundle, DBNetTargets, FCENetTargets
|
||||
from .pipelines import DBNetTargets, FCENetTargets
|
||||
from .text_det_dataset import TextDetDataset
|
||||
from .uniform_concat_dataset import UniformConcatDataset
|
||||
from .utils import * # NOQA
|
||||
|
||||
__all__ = [
|
||||
'DATASETS', 'IcdarDataset', 'BaseDataset', 'OCRDataset', 'TextDetDataset',
|
||||
'CustomFormatBundle', 'DBNetTargets', 'OCRSegDataset', 'KIEDataset',
|
||||
'FCENetTargets', 'NerDataset', 'UniformConcatDataset', 'OpensetKIEDataset',
|
||||
'TRANSFORMS', 'PARSERS', 'LOADERS'
|
||||
'IcdarDataset', 'BaseDataset', 'OCRDataset', 'TextDetDataset',
|
||||
'KIEDataset', 'DBNetTargets', 'OCRSegDataset', 'FCENetTargets',
|
||||
'NerDataset', 'UniformConcatDataset', 'OpensetKIEDataset', 'TRANSFORMS',
|
||||
'PARSERS', 'LOADERS'
|
||||
]
|
||||
|
||||
__all__ += utils.__all__
|
||||
|
@ -1,8 +1,7 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
from .box_utils import sort_vertex, sort_vertex8
|
||||
from .custom_format_bundle import CustomFormatBundle
|
||||
from .dbnet_transforms import EastRandomCrop, ImgAug
|
||||
from .kie_transforms import KIEFormatBundle, ResizeNoImg
|
||||
from .kie_transforms import ResizeNoImg
|
||||
from .loading import (LoadImageFromLMDB, LoadImageFromNdarray,
|
||||
LoadTextAnnotations)
|
||||
from .ner_transforms import NerTransform, ToTensorNER
|
||||
@ -21,14 +20,14 @@ from .transforms import (ColorJitter, PyramidRescale, RandomCropFlip,
|
||||
|
||||
__all__ = [
|
||||
'LoadTextAnnotations', 'NormalizeOCR', 'OnlineCropOCR', 'ResizeOCR',
|
||||
'ToTensorOCR', 'CustomFormatBundle', 'DBNetTargets', 'PANetTargets',
|
||||
'ColorJitter', 'RandomCropInstances', 'RandomRotateTextDet',
|
||||
'ScaleAspectJitter', 'MultiRotateAugOCR', 'OCRSegTargets', 'FancyPCA',
|
||||
'ToTensorOCR', 'DBNetTargets', 'PANetTargets', 'ColorJitter',
|
||||
'RandomCropInstances', 'RandomRotateTextDet', 'ScaleAspectJitter',
|
||||
'MultiRotateAugOCR', 'OCRSegTargets', 'FancyPCA',
|
||||
'RandomCropPolyInstances', 'RandomRotatePolyInstances', 'RandomPaddingOCR',
|
||||
'ImgAug', 'EastRandomCrop', 'RandomRotateImageBox', 'OpencvToPil',
|
||||
'PilToOpencv', 'KIEFormatBundle', 'SquareResizePad', 'TextSnakeTargets',
|
||||
'sort_vertex', 'LoadImageFromNdarray', 'sort_vertex8', 'FCENetTargets',
|
||||
'RandomScaling', 'RandomCropFlip', 'NerTransform', 'ToTensorNER',
|
||||
'ResizeNoImg', 'PyramidRescale', 'OneOfWrapper', 'RandomWrapper',
|
||||
'TorchVisionWrapper', 'LoadImageFromLMDB'
|
||||
'PilToOpencv', 'SquareResizePad', 'TextSnakeTargets', 'sort_vertex',
|
||||
'LoadImageFromNdarray', 'sort_vertex8', 'FCENetTargets', 'RandomScaling',
|
||||
'RandomCropFlip', 'NerTransform', 'ToTensorNER', 'ResizeNoImg',
|
||||
'PyramidRescale', 'OneOfWrapper', 'RandomWrapper', 'TorchVisionWrapper',
|
||||
'LoadImageFromLMDB'
|
||||
]
|
||||
|
@ -1,66 +0,0 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import numpy as np
|
||||
from mmcv.parallel import DataContainer as DC
|
||||
from mmdet.datasets.pipelines.formatting import DefaultFormatBundle
|
||||
|
||||
from mmocr.core.visualize import overlay_mask_img, show_feature
|
||||
from mmocr.registry import TRANSFORMS
|
||||
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class CustomFormatBundle(DefaultFormatBundle):
|
||||
"""Custom formatting bundle.
|
||||
|
||||
It formats common fields such as 'img' and 'proposals' as done in
|
||||
DefaultFormatBundle, while other fields such as 'gt_kernels' and
|
||||
'gt_effective_region_mask' will be formatted to DC as follows:
|
||||
|
||||
- gt_kernels: to DataContainer (cpu_only=True)
|
||||
- gt_effective_mask: to DataContainer (cpu_only=True)
|
||||
|
||||
Args:
|
||||
keys (list[str]): Fields to be formatted to DC only.
|
||||
call_super (bool): If True, format common fields
|
||||
by DefaultFormatBundle, else format fields in keys above only.
|
||||
visualize (dict): If flag=True, visualize gt mask for debugging.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
keys=[],
|
||||
call_super=True,
|
||||
visualize=dict(flag=False, boundary_key=None)):
|
||||
|
||||
super().__init__()
|
||||
self.visualize = visualize
|
||||
self.keys = keys
|
||||
self.call_super = call_super
|
||||
|
||||
def __call__(self, results):
|
||||
|
||||
if self.visualize['flag']:
|
||||
img = results['img'].astype(np.uint8)
|
||||
boundary_key = self.visualize['boundary_key']
|
||||
if boundary_key is not None:
|
||||
img = overlay_mask_img(img, results[boundary_key].masks[0])
|
||||
|
||||
features = [img]
|
||||
names = ['img']
|
||||
to_uint8 = [1]
|
||||
|
||||
for k in results['mask_fields']:
|
||||
for iter in range(len(results[k].masks)):
|
||||
features.append(results[k].masks[iter])
|
||||
names.append(k + str(iter))
|
||||
to_uint8.append(0)
|
||||
show_feature(features, names, to_uint8)
|
||||
|
||||
if self.call_super:
|
||||
results = super().__call__(results)
|
||||
|
||||
for k in self.keys:
|
||||
results[k] = DC(results[k], cpu_only=True)
|
||||
|
||||
return results
|
||||
|
||||
def __repr__(self):
|
||||
return self.__class__.__name__
|
@ -1,8 +1,6 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import numpy as np
|
||||
from mmcv import rescale_size
|
||||
from mmcv.parallel import DataContainer as DC
|
||||
from mmdet.datasets.pipelines.formatting import DefaultFormatBundle, to_tensor
|
||||
|
||||
from mmocr.registry import TRANSFORMS
|
||||
|
||||
@ -40,52 +38,53 @@ class ResizeNoImg:
|
||||
return results
|
||||
|
||||
|
||||
@TRANSFORMS.register_module()
|
||||
class KIEFormatBundle(DefaultFormatBundle):
|
||||
"""Key information extraction formatting bundle.
|
||||
# @TRANSFORMS.register_module()
|
||||
# class KIEFormatBundle(DefaultFormatBundle):
|
||||
# """Key information extraction formatting bundle.
|
||||
|
||||
Based on the DefaultFormatBundle, itt simplifies the pipeline of formatting
|
||||
common fields, including "img", "proposals", "gt_bboxes", "gt_labels",
|
||||
"gt_masks", "gt_semantic_seg", "relations" and "texts".
|
||||
These fields are formatted as follows.
|
||||
# Based on the DefaultFormatBundle, itt simplifies the pipeline of
|
||||
# formatting
|
||||
# common fields, including "img", "proposals", "gt_bboxes", "gt_labels",
|
||||
# "gt_masks", "gt_semantic_seg", "relations" and "texts".
|
||||
# These fields are formatted as follows.
|
||||
|
||||
- img: (1) transpose, (2) to tensor, (3) to DataContainer (stack=True)
|
||||
- proposals: (1) to tensor, (2) to DataContainer
|
||||
- gt_bboxes: (1) to tensor, (2) to DataContainer
|
||||
- gt_bboxes_ignore: (1) to tensor, (2) to DataContainer
|
||||
- gt_labels: (1) to tensor, (2) to DataContainer
|
||||
- gt_masks: (1) to tensor, (2) to DataContainer (cpu_only=True)
|
||||
- gt_semantic_seg: (1) unsqueeze dim-0 (2) to tensor,
|
||||
(3) to DataContainer (stack=True)
|
||||
- relations: (1) scale, (2) to tensor, (3) to DataContainer
|
||||
- texts: (1) to tensor, (2) to DataContainer
|
||||
"""
|
||||
# - img: (1) transpose, (2) to tensor, (3) to DataContainer (stack=True)
|
||||
# - proposals: (1) to tensor, (2) to DataContainer
|
||||
# - gt_bboxes: (1) to tensor, (2) to DataContainer
|
||||
# - gt_bboxes_ignore: (1) to tensor, (2) to DataContainer
|
||||
# - gt_labels: (1) to tensor, (2) to DataContainer
|
||||
# - gt_masks: (1) to tensor, (2) to DataContainer (cpu_only=True)
|
||||
# - gt_semantic_seg: (1) unsqueeze dim-0 (2) to tensor,
|
||||
# (3) to DataContainer (stack=True)
|
||||
# - relations: (1) scale, (2) to tensor, (3) to DataContainer
|
||||
# - texts: (1) to tensor, (2) to DataContainer
|
||||
# """
|
||||
|
||||
def __call__(self, results):
|
||||
"""Call function to transform and format common fields in results.
|
||||
# def __call__(self, results):
|
||||
# """Call function to transform and format common fields in results.
|
||||
|
||||
Args:
|
||||
results (dict): Result dict contains the data to convert.
|
||||
# Args:
|
||||
# results (dict): Result dict contains the data to convert.
|
||||
|
||||
Returns:
|
||||
dict: The result dict contains the data that is formatted with
|
||||
default bundle.
|
||||
"""
|
||||
super().__call__(results)
|
||||
if 'ann_info' in results:
|
||||
for key in ['relations', 'texts']:
|
||||
value = results['ann_info'][key]
|
||||
if key == 'relations' and 'scale_factor' in results:
|
||||
scale_factor = results['scale_factor']
|
||||
if isinstance(scale_factor, float):
|
||||
sx = sy = scale_factor
|
||||
else:
|
||||
sx, sy = results['scale_factor'][:2]
|
||||
r = sx / sy
|
||||
factor = np.array([sx, sy, r, 1, r]).astype(np.float32)
|
||||
value = value * factor[None, None]
|
||||
results[key] = DC(to_tensor(value))
|
||||
return results
|
||||
# Returns:
|
||||
# dict: The result dict contains the data that is formatted with
|
||||
# default bundle.
|
||||
# """
|
||||
# super().__call__(results)
|
||||
# if 'ann_info' in results:
|
||||
# for key in ['relations', 'texts']:
|
||||
# value = results['ann_info'][key]
|
||||
# if key == 'relations' and 'scale_factor' in results:
|
||||
# scale_factor = results['scale_factor']
|
||||
# if isinstance(scale_factor, float):
|
||||
# sx = sy = scale_factor
|
||||
# else:
|
||||
# sx, sy = results['scale_factor'][:2]
|
||||
# r = sx / sy
|
||||
# factor = np.array([sx, sy, r, 1, r]).astype(np.float32)
|
||||
# value = value * factor[None, None]
|
||||
# results[key] = DC(to_tensor(value))
|
||||
# return results
|
||||
|
||||
def __repr__(self):
|
||||
return self.__class__.__name__
|
||||
# def __repr__(self):
|
||||
# return self.__class__.__name__
|
||||
|
Loading…
x
Reference in New Issue
Block a user