[SDMGR] Add SDMGR configs

pull/1178/head
gaotongxiao 2022-07-08 16:24:12 +00:00
parent 77ffe8fb00
commit 422bea9d10
3 changed files with 239 additions and 250 deletions

View File

@ -1,98 +1,81 @@
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
max_scale, min_scale = 1024, 512
_base_ = ['../../_base_/default_runtime.py']
train_pipeline = [
dict(type='LoadAnnotations'),
dict(
type='ResizeNoImg', img_scale=(max_scale, min_scale), keep_ratio=True),
dict(type='KIEFormatBundle'),
dict(
type='Collect',
keys=['img', 'relations', 'texts', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_texts'))
]
test_pipeline = [
dict(type='LoadAnnotations'),
dict(
type='ResizeNoImg', img_scale=(max_scale, min_scale), keep_ratio=True),
dict(type='KIEFormatBundle'),
dict(
type='Collect',
keys=['img', 'relations', 'texts', 'gt_bboxes'],
meta_keys=('filename', 'ori_texts', 'img_norm_cfg', 'ori_filename',
'img_shape'))
optim_wrapper = dict(
type='OptimWrapper', optimizer=dict(type='Adam', weight_decay=0.0001))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=60, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning rate
param_scheduler = [
dict(type='MultiStepLR', milestones=[40, 50], end=60),
]
dataset_type = 'KIEDataset'
data_root = 'data/wildreceipt'
default_hooks = dict(logger=dict(type='LoggerHook', interval=100), )
loader = dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations']))
train = dict(
type=dataset_type,
ann_file=f'{data_root}/train.txt',
pipeline=train_pipeline,
img_prefix=data_root,
loader=loader,
dict_file=f'{data_root}/dict.txt',
test_mode=False)
test = dict(
type=dataset_type,
ann_file=f'{data_root}/test.txt',
pipeline=test_pipeline,
img_prefix=data_root,
loader=loader,
dict_file=f'{data_root}/dict.txt',
test_mode=True)
data = dict(
samples_per_gpu=4,
workers_per_gpu=1,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=train,
val=test,
test=test)
evaluation = dict(
interval=1,
metric='macro_f1',
metric_options=dict(
macro_f1=dict(
ignores=[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25])))
num_classes = 26
model = dict(
type='SDMGR',
backbone=dict(type='UNet', base_channels=16),
bbox_head=dict(
type='SDMGRHead', visual_dim=16, num_chars=92, num_classes=26),
visual_modality=False,
train_cfg=None,
test_cfg=None,
class_list=f'{data_root}/class_list.txt')
kie_head=dict(
type='SDMGRHead',
visual_dim=16,
num_classes=num_classes,
module_loss=dict(type='SDMGRModuleLoss'),
postprocessor=dict(type='SDMGRPostProcessor')),
dictionary=dict(
type='Dictionary',
dict_file='data/wildreceipt/dict.txt',
with_padding=True,
with_unknown=True,
unknown_token=None),
)
optimizer = dict(type='Adam', weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1,
warmup_ratio=1,
step=[40, 50])
total_epochs = 60
train_pipeline = [
dict(type='LoadKIEAnnotations'),
dict(type='Resize', scale=(1024, 512), keep_ratio=True),
dict(type='PackKIEInputs')
]
test_pipeline = [
dict(type='LoadKIEAnnotations'),
dict(type='Resize', scale=(1024, 512), keep_ratio=True),
dict(type='PackKIEInputs'),
]
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
dataset_type = 'WildReceiptDataset'
data_root = 'data/wildreceipt/'
find_unused_parameters = True
train_dataset = dict(
type=dataset_type,
data_root=data_root,
metainfo=data_root + 'class_list.txt',
ann_file='train.txt',
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
metainfo=data_root + 'class_list.txt',
ann_file='test.txt',
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=4,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(
type='F1Metric',
mode='macro',
num_classes=num_classes,
ignored_classes=[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25])
test_evaluator = val_evaluator

View File

@ -1,84 +1,101 @@
_base_ = ['../../_base_/default_runtime.py']
optim_wrapper = dict(
type='OptimWrapper', optimizer=dict(type='Adam', weight_decay=0.0001))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=60, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning rate
param_scheduler = [
dict(type='MultiStepLR', milestones=[40, 50], end=60),
]
default_hooks = dict(logger=dict(type='LoggerHook', interval=100), )
num_classes = 4
key_node_idx = 1
value_node_idx = 2
model = dict(
type='SDMGR',
backbone=dict(type='UNet', base_channels=16),
bbox_head=dict(
type='SDMGRHead', visual_dim=16, num_chars=92, num_classes=4),
visual_modality=False,
train_cfg=None,
test_cfg=None,
class_list=None,
openset=True)
optimizer = dict(type='Adam', weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1,
warmup_ratio=1,
step=[40, 50])
total_epochs = 60
kie_head=dict(
type='SDMGRHead',
visual_dim=16,
num_classes=num_classes,
module_loss=dict(type='SDMGRModuleLoss'),
postprocessor=dict(
type='SDMGRPostProcessor',
link_type='one-to-many',
key_node_idx=key_node_idx,
value_node_idx=value_node_idx)),
dictionary=dict(
type='Dictionary',
dict_file='data/wildreceipt/dict.txt',
with_padding=True,
with_unknown=True,
unknown_token=None),
)
train_pipeline = [
dict(type='LoadAnnotations'),
dict(type='ResizeNoImg', img_scale=(1024, 512), keep_ratio=True),
dict(type='KIEFormatBundle'),
dict(
type='Collect',
keys=['img', 'relations', 'texts', 'gt_bboxes', 'gt_labels'],
meta_keys=('filename', 'ori_filename', 'ori_texts'))
dict(type='LoadKIEAnnotations'),
dict(type='Resize', scale=(1024, 512), keep_ratio=True),
dict(type='PackKIEInputs')
]
test_pipeline = [
dict(type='LoadAnnotations'),
dict(type='ResizeNoImg', img_scale=(1024, 512), keep_ratio=True),
dict(type='KIEFormatBundle'),
dict(
type='Collect',
keys=['img', 'relations', 'texts', 'gt_bboxes'],
meta_keys=('filename', 'ori_filename', 'ori_texts', 'ori_bboxes',
'img_norm_cfg', 'ori_filename', 'img_shape'))
type='LoadKIEAnnotations',
key_node_idx=key_node_idx,
value_node_idx=value_node_idx), # Keep key->value edges for evaluation
dict(type='Resize', scale=(1024, 512), keep_ratio=True),
dict(type='PackKIEInputs'),
]
dataset_type = 'OpensetKIEDataset'
data_root = 'data/wildreceipt'
dataset_type = 'WildReceiptDataset'
data_root = 'data/wildreceipt/'
loader = dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations']))
train = dict(
train_dataset = dict(
type=dataset_type,
ann_file=f'{data_root}/openset_train.txt',
pipeline=train_pipeline,
img_prefix=data_root,
link_type='one-to-many',
loader=loader,
dict_file=f'{data_root}/dict.txt',
test_mode=False)
test = dict(
data_root=data_root,
metainfo=data_root + 'class_list.txt',
ann_file='openset_train.txt',
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
ann_file=f'{data_root}/openset_test.txt',
pipeline=test_pipeline,
img_prefix=data_root,
link_type='one-to-many',
loader=loader,
dict_file=f'{data_root}/dict.txt',
test_mode=True)
data_root=data_root,
metainfo=data_root + 'class_list.txt',
ann_file='openset_test.txt',
test_mode=True,
pipeline=test_pipeline)
data = dict(
samples_per_gpu=4,
workers_per_gpu=1,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=train,
val=test,
test=test)
train_dataloader = dict(
batch_size=4,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
evaluation = dict(interval=1, metric='openset_f1', metric_options=None)
find_unused_parameters = True
val_evaluator = [
dict(
type='F1Metric',
prefix='node',
key='labels',
mode=['micro', 'macro'],
num_classes=num_classes,
cared_classes=[key_node_idx, value_node_idx]),
dict(
type='F1Metric',
prefix='edge',
mode='micro',
key='edge_labels',
cared_classes=[1], # binary f1 score
num_classes=2)
]
test_evaluator = val_evaluator

View File

@ -1,105 +1,94 @@
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
max_scale, min_scale = 1024, 512
_base_ = ['../../_base_/default_runtime.py']
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='KIEFormatBundle'),
dict(
type='Collect',
keys=['img', 'relations', 'texts', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(type='Resize', img_scale=(max_scale, min_scale), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='KIEFormatBundle'),
dict(
type='Collect',
keys=['img', 'relations', 'texts', 'gt_bboxes'],
meta_keys=[
'img_norm_cfg', 'img_shape', 'ori_filename', 'filename',
'ori_texts'
])
optim_wrapper = dict(
type='OptimWrapper', optimizer=dict(type='Adam', weight_decay=0.0001))
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=60, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
# learning rate
param_scheduler = [
dict(type='MultiStepLR', milestones=[40, 50], end=60),
]
dataset_type = 'KIEDataset'
data_root = 'data/wildreceipt'
default_hooks = dict(logger=dict(type='LoggerHook', interval=100), )
loader = dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineJsonParser',
keys=['file_name', 'height', 'width', 'annotations']))
train = dict(
type=dataset_type,
ann_file=f'{data_root}/train.txt',
pipeline=train_pipeline,
img_prefix=data_root,
loader=loader,
dict_file=f'{data_root}/dict.txt',
test_mode=False)
test = dict(
type=dataset_type,
ann_file=f'{data_root}/test.txt',
pipeline=test_pipeline,
img_prefix=data_root,
loader=loader,
dict_file=f'{data_root}/dict.txt',
test_mode=True)
data = dict(
samples_per_gpu=4,
workers_per_gpu=4,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=train,
val=test,
test=test)
evaluation = dict(
interval=1,
metric='macro_f1',
metric_options=dict(
macro_f1=dict(
ignores=[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25])))
num_classes = 26
model = dict(
type='SDMGR',
backbone=dict(type='UNet', base_channels=16),
bbox_head=dict(
type='SDMGRHead', visual_dim=16, num_chars=92, num_classes=26),
visual_modality=True,
train_cfg=None,
test_cfg=None,
class_list=f'{data_root}/class_list.txt')
roi_extractor=dict(
type='mmdet.SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7),
featmap_strides=[1]),
kie_head=dict(
type='SDMGRHead',
visual_dim=16,
num_classes=num_classes,
module_loss=dict(type='SDMGRModuleLoss'),
postprocessor=dict(type='SDMGRPostProcessor')),
dictionary=dict(
type='Dictionary',
dict_file='data/wildreceipt/dict.txt',
with_padding=True,
with_unknown=True,
unknown_token=None),
data_preprocessor=dict(
type='ImgDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
)
optimizer = dict(type='Adam', weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=1,
warmup_ratio=1,
step=[40, 50])
total_epochs = 60
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadKIEAnnotations'),
dict(type='Resize', scale=(1024, 512), keep_ratio=True),
dict(type='PackKIEInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadKIEAnnotations'),
dict(type='Resize', scale=(1024, 512), keep_ratio=True),
dict(type='PackKIEInputs'),
]
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
dataset_type = 'WildReceiptDataset'
data_root = 'data/wildreceipt/'
find_unused_parameters = True
train_dataset = dict(
type=dataset_type,
data_root=data_root,
metainfo=data_root + 'class_list.txt',
ann_file='train.txt',
pipeline=train_pipeline)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
metainfo=data_root + 'class_list.txt',
ann_file='test.txt',
test_mode=True,
pipeline=test_pipeline)
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(
type='F1Metric',
mode='macro',
num_classes=num_classes,
ignored_classes=[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25])
test_evaluator = val_evaluator