mirror of https://github.com/open-mmlab/mmocr.git
update metafiles
parent
20e999e3b9
commit
567aec5390
|
@ -23,14 +23,10 @@ Scene text detection has witnessed rapid progress especially with the recent dev
|
|||
|
||||
### ICDAR2015
|
||||
|
||||
| Method | Backbone | Extra Data | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
||||
| :-------------------------------------------------------------------: | :------: | :---------------------------------------------------------------------------------------------------------------------------------------: | :----------: | :-------: | :-----: | :-------: | :-----------: | :-----------: | :-----------: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||
| [PSENet-4s](configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | ResNet50 | - | IC15 Train | IC15 Test | 600 | 2240 | 0.784 (0.753) | 0.831 (0.867) | 0.807 (0.806) | [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015-c6131f0d.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/psenet/20210331_214145.log.json) |
|
||||
| [PSENet-4s](configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | ResNet50 | pretrain on IC17 MLT [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2017_as_pretrain-3bd6056c.pth) | IC15 Train | IC15 Test | 600 | 2240 | 0.834 | 0.861 | 0.847 | [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-eefd8fe6.pth) \| [log](<>) |
|
||||
|
||||
```{note}
|
||||
We've upgraded our IoU backend from `Polygon3` to `shapely`. There are some performance differences for some models due to the backends' different logics to handle invalid polygons (more info [here](https://github.com/open-mmlab/mmocr/issues/465)). **New evaluation result is presented in brackets** and new logs will be uploaded soon.
|
||||
```
|
||||
| Method | Backbone | Extra Data | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
||||
| :-------------------------------------------------------------------: | :------: | :---------------------------------------------------------------------------------------------------------------------------------------: | :----------: | :-------: | :-----: | :-------: | :----: | :-------: | :---: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||
| [PSENet-4s](configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | ResNet50 | - | IC15 Train | IC15 Test | 600 | 2240 | 0.766 | 0.840 | 0.806 | [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015-c6131f0d.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/psenet/20210331_214145.log.json) |
|
||||
| [PSENet-4s](configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | ResNet50 | pretrain on IC17 MLT [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2017_as_pretrain-3bd6056c.pth) | IC15 Train | IC15 Test | 600 | 2240 | 0.834 | 0.861 | 0.847 | [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-eefd8fe6.pth) \| [log]() |
|
||||
|
||||
|
||||
## Citation
|
||||
|
|
|
@ -4,10 +4,11 @@ Collections:
|
|||
Training Data: ICDAR SCUT-CTW1500
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 8x GeForce GTX 1080 Ti
|
||||
Training Resources: 1x Tesla A100
|
||||
Architecture:
|
||||
- ResNet
|
||||
- FPNF
|
||||
- PSEHead
|
||||
Paper:
|
||||
URL: https://arxiv.org/abs/1806.02559.pdf
|
||||
Title: 'Shape Robust Text Detection with Progressive Scale Expansion Network'
|
||||
|
@ -35,7 +36,7 @@ Models:
|
|||
- Task: Text Detection
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
hmean-iou: 0.807
|
||||
hmean-iou: 0.806
|
||||
Weights: https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015-c6131f0d.pth
|
||||
|
||||
- Name: psenet_r50_fpnf_600e_icdar2015
|
||||
|
|
|
@ -38,7 +38,7 @@ Scene text recognition (STR) is the task of recognizing character sequences in n
|
|||
| Methods | | Regular Text | | | | Irregular Text | | download |
|
||||
| :----------------------------------------------------: | :----: | :----------: | :---: | :---: | :---: | :------------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||
| | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 |
|
||||
| [Satrn](/configs/textrecog/satrn/satrn_academic.py) | 96.1 | 93.5 | 95.7 | | 84.1 | 88.5 | 90.3 | [model](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_academic_20211009-cb8b1580.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/satrn/20210809_093244.log.json) |
|
||||
| [Satrn](/configs/textrecog/satrn/satrn_academic.py) | 95.1 | 92.0 | 95.8 | | 81.4 | 87.6 | 90.6 | [model](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_academic_20211009-cb8b1580.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/satrn/20210809_093244.log.json) |
|
||||
| [Satrn_small](/configs/textrecog/satrn/satrn_small.py) | 94.7 | 91.3 | 95.4 | | 81.9 | 85.9 | 86.5 | [model](https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_small_20211009-2cf13355.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/satrn/20210811_053047.log.json) |
|
||||
|
||||
## Citation
|
||||
|
|
|
@ -4,13 +4,13 @@ Collections:
|
|||
Training Data: OCRDataset
|
||||
Training Techniques:
|
||||
- Adam
|
||||
Training Resources: 8x Tesla V100
|
||||
Training Resources: 4x Tesla A100
|
||||
Epochs: 6
|
||||
Batch Size: 512
|
||||
Architecture:
|
||||
- ShallowCNN
|
||||
- SatrnEncoder
|
||||
- TFDecoder
|
||||
- NRTRDecoder
|
||||
Paper:
|
||||
URL: https://arxiv.org/pdf/1910.04396.pdf
|
||||
Title: 'On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention'
|
||||
|
@ -28,27 +28,27 @@ Models:
|
|||
- Task: Text Recognition
|
||||
Dataset: IIIT5K
|
||||
Metrics:
|
||||
word_acc: 96.1
|
||||
word_acc: 95.1
|
||||
- Task: Text Recognition
|
||||
Dataset: SVT
|
||||
Metrics:
|
||||
word_acc: 93.5
|
||||
word_acc: 92.0
|
||||
- Task: Text Recognition
|
||||
Dataset: ICDAR2013
|
||||
Metrics:
|
||||
word_acc: 95.7
|
||||
word_acc: 95.8
|
||||
- Task: Text Recognition
|
||||
Dataset: ICDAR2015
|
||||
Metrics:
|
||||
word_acc: 84.1
|
||||
word_acc: 81.4
|
||||
- Task: Text Recognition
|
||||
Dataset: SVTP
|
||||
Metrics:
|
||||
word_acc: 88.5
|
||||
word_acc: 87.6
|
||||
- Task: Text Recognition
|
||||
Dataset: CT80
|
||||
Metrics:
|
||||
word_acc: 90.3
|
||||
word_acc: 90.6
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/satrn/satrn_academic_20211009-cb8b1580.pth
|
||||
|
||||
- Name: satrn_small
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
Import:
|
||||
- configs/textdet/dbnet/metafile.yml
|
||||
- configs/textdet/dbnetpp/metafile.yml
|
||||
- configs/textdet/maskrcnn/metafile.yml
|
||||
- configs/textdet/drrg/metafile.yml
|
||||
- configs/textdet/fcenet/metafile.yml
|
||||
|
@ -8,6 +9,7 @@ Import:
|
|||
- configs/textdet/textsnake/metafile.yml
|
||||
- configs/textrecog/abinet/metafile.yml
|
||||
- configs/textrecog/crnn/metafile.yml
|
||||
- configs/textrecog/master/metafile.yml
|
||||
- configs/textrecog/nrtr/metafile.yml
|
||||
- configs/textrecog/robust_scanner/metafile.yml
|
||||
- configs/textrecog/sar/metafile.yml
|
||||
|
|
Loading…
Reference in New Issue