diff --git a/configs/textdet/dbnet/README.md b/configs/textdet/dbnet/README.md index 97647e5e..60d35add 100644 --- a/configs/textdet/dbnet/README.md +++ b/configs/textdet/dbnet/README.md @@ -19,7 +19,7 @@ Recently, segmentation-based methods are quite popular in scene text detection, | Method | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download | | :--------------------------------------: | :-------------------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :-----------------------------------------: | | [DBNet_r18](/configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py) | ImageNet | ICDAR2015 Train | ICDAR2015 Test | 1200 | 736 | 0.8853 | 0.7583 | 0.8169 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/20220825_221614.log) | -| [DBNet_r50dcn](/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-aa96e477.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.8784 | 0.8315 | 0.8543 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015_20220828_124917-452c443c.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/20220828_124917.log) | +| [DBNet_r50dcn](/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-ed322016.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.8784 | 0.8315 | 0.8543 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015_20220828_124917-452c443c.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/20220828_124917.log) | ## Citation diff --git a/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py b/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py index 074cf74b..41cf2c46 100644 --- a/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py +++ b/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py @@ -6,7 +6,7 @@ _base_ = [ ] # TODO: Replace the link -load_from = 'https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-aa96e477.pth' # noqa +load_from = 'https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-ed322016.pth' # noqa # dataset settings ic15_det_train = _base_.ic15_det_train diff --git a/configs/textdet/dbnetpp/README.md b/configs/textdet/dbnetpp/README.md index 3d0d6165..50bf3fa3 100644 --- a/configs/textdet/dbnetpp/README.md +++ b/configs/textdet/dbnetpp/README.md @@ -18,7 +18,7 @@ Recently, segmentation-based scene text detection methods have drawn extensive a | Method | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download | | :--------------------------------------: | :-------------------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :-----------------------------------------: | -| [DBNetpp_r50dcn](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_100k_synthtext.py) ([model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-db297554.pth)) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9116 | 0.8291 | 0.8684 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015_20220829_230108-f289bd20.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/20220829_230108.log) | +| [DBNetpp_r50dcn](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_100k_synthtext.py) ([model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/tmp_1.0_pretrain/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-352fec8a.pth)) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9116 | 0.8291 | 0.8684 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015_20220829_230108-f289bd20.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/20220829_230108.log) | ## Citation diff --git a/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py b/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py index 6fe19265..84f7af72 100644 --- a/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py +++ b/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py @@ -5,6 +5,8 @@ _base_ = [ '../_base_/schedules/schedule_sgd_1200e.py', ] +load_from = 'https://download.openmmlab.com/mmocr/textdet/dbnetpp/tmp_1.0_pretrain/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-352fec8a.pth' # noqa + # dataset settings train_list = [_base_.ic15_det_train] test_list = [_base_.ic15_det_test] diff --git a/configs/textrecog/abinet/abinet_20e_st-an_mj.py b/configs/textrecog/abinet/abinet_20e_st-an_mj.py index 85b00cd9..83277075 100644 --- a/configs/textrecog/abinet/abinet_20e_st-an_mj.py +++ b/configs/textrecog/abinet/abinet_20e_st-an_mj.py @@ -12,6 +12,8 @@ _base_ = [ '_base_abinet.py', ] +load_from = 'https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_pretrain-45deac15.pth' # noqa + optim_wrapper = dict(optimizer=dict(lr=1e-4)) train_cfg = dict(max_epochs=20) # learning policy