mirror of https://github.com/open-mmlab/mmocr.git
[Config] Update paths to pretrain weights (#1416)
parent
a0284ae910
commit
5e596cc579
|
@ -19,7 +19,7 @@ Recently, segmentation-based methods are quite popular in scene text detection,
|
|||
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
|
||||
| :--------------------------------------: | :-------------------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :-----------------------------------------: |
|
||||
| [DBNet_r18](/configs/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015.py) | ImageNet | ICDAR2015 Train | ICDAR2015 Test | 1200 | 736 | 0.8853 | 0.7583 | 0.8169 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/dbnet_resnet18_fpnc_1200e_icdar2015_20220825_221614-7c0e94f2.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet18_fpnc_1200e_icdar2015/20220825_221614.log) |
|
||||
| [DBNet_r50dcn](/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-aa96e477.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.8784 | 0.8315 | 0.8543 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015_20220828_124917-452c443c.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/20220828_124917.log) |
|
||||
| [DBNet_r50dcn](/configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-ed322016.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.8784 | 0.8315 | 0.8543 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015_20220828_124917-452c443c.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015/20220828_124917.log) |
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -6,7 +6,7 @@ _base_ = [
|
|||
]
|
||||
|
||||
# TODO: Replace the link
|
||||
load_from = 'https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-aa96e477.pth' # noqa
|
||||
load_from = 'https://download.openmmlab.com/mmocr/textdet/dbnet/tmp_1.0_pretrain/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-ed322016.pth' # noqa
|
||||
|
||||
# dataset settings
|
||||
ic15_det_train = _base_.ic15_det_train
|
||||
|
|
|
@ -18,7 +18,7 @@ Recently, segmentation-based scene text detection methods have drawn extensive a
|
|||
|
||||
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Precision | Recall | Hmean | Download |
|
||||
| :--------------------------------------: | :-------------------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :-------: | :----: | :----: | :-----------------------------------------: |
|
||||
| [DBNetpp_r50dcn](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_100k_synthtext.py) ([model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-db297554.pth)) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9116 | 0.8291 | 0.8684 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015_20220829_230108-f289bd20.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/20220829_230108.log) |
|
||||
| [DBNetpp_r50dcn](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](/configs/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_100k_synthtext.py) ([model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/tmp_1.0_pretrain/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-352fec8a.pth)) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.9116 | 0.8291 | 0.8684 | [model](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015_20220829_230108-f289bd20.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnetpp/dbnetpp_resnet50-dcnv2_fpnc_1200e_icdar2015/20220829_230108.log) |
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -5,6 +5,8 @@ _base_ = [
|
|||
'../_base_/schedules/schedule_sgd_1200e.py',
|
||||
]
|
||||
|
||||
load_from = 'https://download.openmmlab.com/mmocr/textdet/dbnetpp/tmp_1.0_pretrain/dbnetpp_r50dcnv2_fpnc_100k_iter_synthtext-20220502-352fec8a.pth' # noqa
|
||||
|
||||
# dataset settings
|
||||
train_list = [_base_.ic15_det_train]
|
||||
test_list = [_base_.ic15_det_test]
|
||||
|
|
|
@ -12,6 +12,8 @@ _base_ = [
|
|||
'_base_abinet.py',
|
||||
]
|
||||
|
||||
load_from = 'https://download.openmmlab.com/mmocr/textrecog/abinet/abinet_pretrain-45deac15.pth' # noqa
|
||||
|
||||
optim_wrapper = dict(optimizer=dict(lr=1e-4))
|
||||
train_cfg = dict(max_epochs=20)
|
||||
# learning policy
|
||||
|
|
Loading…
Reference in New Issue