mirror of https://github.com/open-mmlab/mmocr.git
parent
b422dedd8d
commit
5fc920495a
|
@ -11,7 +11,7 @@ label_convertor = dict(
|
|||
with_unknown=False,
|
||||
with_padding=False,
|
||||
lower=True,
|
||||
)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='ABINet',
|
||||
|
|
|
@ -1,5 +1,10 @@
|
|||
max_seq_len = 30
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='MASTER',
|
||||
|
@ -58,4 +63,4 @@ model = dict(
|
|||
feat_size=6 * 40),
|
||||
loss=dict(type='TFLoss', reduction='mean'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=30)
|
||||
max_seq_len=max_seq_len)
|
||||
|
|
|
@ -1,5 +1,11 @@
|
|||
max_seq_len = 40
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT36', with_unknown=True, lower=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT36',
|
||||
with_unknown=True,
|
||||
lower=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
|
@ -8,4 +14,4 @@ model = dict(
|
|||
decoder=dict(type='NRTRDecoder'),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=40)
|
||||
max_seq_len=max_seq_len)
|
||||
|
|
|
@ -1,5 +1,10 @@
|
|||
max_seq_len = 30
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
hybrid_decoder = dict(type='SequenceAttentionDecoder')
|
||||
|
||||
|
@ -21,4 +26,4 @@ model = dict(
|
|||
position_decoder=position_decoder),
|
||||
loss=dict(type='SARLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=30)
|
||||
max_seq_len=max_seq_len)
|
||||
|
|
|
@ -1,5 +1,10 @@
|
|||
max_seq_len = 30
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='SARNet',
|
||||
|
@ -21,4 +26,4 @@ model = dict(
|
|||
pred_concat=True),
|
||||
loss=dict(type='SARLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=30)
|
||||
max_seq_len=max_seq_len)
|
||||
|
|
|
@ -1,5 +1,11 @@
|
|||
max_seq_len = 40
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT36', with_unknown=True, lower=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT36',
|
||||
with_unknown=True,
|
||||
lower=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='SATRN',
|
||||
|
@ -8,4 +14,4 @@ model = dict(
|
|||
decoder=dict(type='TFDecoder'),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=40)
|
||||
max_seq_len=max_seq_len)
|
||||
|
|
|
@ -21,7 +21,7 @@ label_convertor = dict(
|
|||
with_unknown=False,
|
||||
with_padding=False,
|
||||
lower=True,
|
||||
)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='ABINet',
|
||||
|
|
|
@ -12,8 +12,13 @@ test_list = {{_base_.test_list}}
|
|||
train_pipeline = {{_base_.train_pipeline}}
|
||||
test_pipeline = {{_base_.test_pipeline}}
|
||||
|
||||
max_seq_len = 40
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
|
@ -27,7 +32,7 @@ model = dict(
|
|||
decoder=dict(type='NRTRDecoder'),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=40)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=128,
|
||||
|
|
|
@ -12,8 +12,13 @@ test_list = {{_base_.test_list}}
|
|||
train_pipeline = {{_base_.train_pipeline}}
|
||||
test_pipeline = {{_base_.test_pipeline}}
|
||||
|
||||
max_seq_len = 40
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
|
@ -27,7 +32,7 @@ model = dict(
|
|||
decoder=dict(type='NRTRDecoder'),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=40)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=64,
|
||||
|
|
|
@ -2,10 +2,13 @@ _base_ = [
|
|||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_5e.py'
|
||||
]
|
||||
|
||||
max_seq_len = 30
|
||||
dict_file = 'data/chineseocr/labels/dict_printed_chinese_english_digits.txt'
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_file=dict_file, with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_file=dict_file,
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='SARNet',
|
||||
|
@ -27,7 +30,7 @@ model = dict(
|
|||
pred_concat=True),
|
||||
loss=dict(type='SARLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=30)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||||
train_pipeline = [
|
||||
|
|
|
@ -12,8 +12,13 @@ test_list = {{_base_.test_list}}
|
|||
train_pipeline = {{_base_.train_pipeline}}
|
||||
test_pipeline = {{_base_.test_pipeline}}
|
||||
|
||||
max_seq_len = 30
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='SARNet',
|
||||
|
@ -35,7 +40,7 @@ model = dict(
|
|||
pred_concat=True),
|
||||
loss=dict(type='SARLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=30)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
data = dict(
|
||||
samples_per_gpu=64,
|
||||
|
|
|
@ -12,8 +12,13 @@ test_list = {{_base_.test_list}}
|
|||
train_pipeline = {{_base_.train_pipeline}}
|
||||
test_pipeline = {{_base_.test_pipeline}}
|
||||
|
||||
max_seq_len = 25
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='SATRN',
|
||||
|
@ -39,7 +44,7 @@ model = dict(
|
|||
d_v=512 // 8),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=25)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=3e-4)
|
||||
|
|
|
@ -12,8 +12,13 @@ test_list = {{_base_.test_list}}
|
|||
train_pipeline = {{_base_.train_pipeline}}
|
||||
test_pipeline = {{_base_.test_pipeline}}
|
||||
|
||||
max_seq_len = 25
|
||||
|
||||
label_convertor = dict(
|
||||
type='AttnConvertor', dict_type='DICT90', with_unknown=True)
|
||||
type='AttnConvertor',
|
||||
dict_type='DICT90',
|
||||
with_unknown=True,
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
model = dict(
|
||||
type='SATRN',
|
||||
|
@ -39,7 +44,7 @@ model = dict(
|
|||
d_v=256 // 8),
|
||||
loss=dict(type='TFLoss'),
|
||||
label_convertor=label_convertor,
|
||||
max_seq_len=25)
|
||||
max_seq_len=max_seq_len)
|
||||
|
||||
# optimizer
|
||||
optimizer = dict(type='Adam', lr=3e-4)
|
||||
|
|
Loading…
Reference in New Issue