mirror of
https://github.com/open-mmlab/mmocr.git
synced 2025-06-03 21:54:47 +08:00
[Feature] Add IC11 (Born-digital Images) Data Converter (#857)
* add IC11 (born-digital images) converter * fix * fix format * add docs; fix format; * fix doc * doc string * fix docs * move directory tree * fix indentation * revert docs Co-authored-by: gaotongxiao <gaotongxiao@gmail.com>
This commit is contained in:
parent
347a8090e2
commit
692425e79d
172
tools/data/textdet/ic11_converter.py
Normal file
172
tools/data/textdet/ic11_converter.py
Normal file
@ -0,0 +1,172 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import os
|
||||
import os.path as osp
|
||||
|
||||
import mmcv
|
||||
from PIL import Image
|
||||
|
||||
from mmocr.utils import convert_annotations
|
||||
|
||||
|
||||
def convert_gif(img_path):
|
||||
"""Convert the gif image to png format.
|
||||
|
||||
Args:
|
||||
img_path (str): The path to the gif image
|
||||
"""
|
||||
img = Image.open(img_path)
|
||||
dst_path = img_path.replace('gif', 'png')
|
||||
img.save(dst_path)
|
||||
os.remove(img_path)
|
||||
print(f'Convert {img_path} to {dst_path}')
|
||||
|
||||
|
||||
def collect_files(img_dir, gt_dir):
|
||||
"""Collect all images and their corresponding groundtruth files.
|
||||
|
||||
Args:
|
||||
img_dir (str): The image directory
|
||||
gt_dir (str): The groundtruth directory
|
||||
|
||||
Returns:
|
||||
files (list): The list of tuples (img_file, groundtruth_file)
|
||||
"""
|
||||
assert isinstance(img_dir, str)
|
||||
assert img_dir
|
||||
assert isinstance(gt_dir, str)
|
||||
assert gt_dir
|
||||
|
||||
ann_list, imgs_list = [], []
|
||||
for img in os.listdir(img_dir):
|
||||
img_path = osp.join(img_dir, img)
|
||||
# mmcv cannot read gif images, so convert them to png
|
||||
if img.endswith('gif'):
|
||||
convert_gif(img_path)
|
||||
img_path = img_path.replace('gif', 'png')
|
||||
imgs_list.append(img_path)
|
||||
ann_list.append(osp.join(gt_dir, 'gt_' + img.split('.')[0] + '.txt'))
|
||||
|
||||
files = list(zip(sorted(imgs_list), sorted(ann_list)))
|
||||
assert len(files), f'No images found in {img_dir}'
|
||||
print(f'Loaded {len(files)} images from {img_dir}')
|
||||
|
||||
return files
|
||||
|
||||
|
||||
def collect_annotations(files, nproc=1):
|
||||
"""Collect the annotation information.
|
||||
|
||||
Args:
|
||||
files (list): The list of tuples (image_file, groundtruth_file)
|
||||
nproc (int): The number of process to collect annotations
|
||||
|
||||
Returns:
|
||||
images (list): The list of image information dicts
|
||||
"""
|
||||
assert isinstance(files, list)
|
||||
assert isinstance(nproc, int)
|
||||
|
||||
if nproc > 1:
|
||||
images = mmcv.track_parallel_progress(
|
||||
load_img_info, files, nproc=nproc)
|
||||
else:
|
||||
images = mmcv.track_progress(load_img_info, files)
|
||||
|
||||
return images
|
||||
|
||||
|
||||
def load_img_info(files):
|
||||
"""Load the information of one image.
|
||||
|
||||
Args:
|
||||
files (tuple): The tuple of (img_file, groundtruth_file)
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
assert isinstance(files, tuple)
|
||||
|
||||
img_file, gt_file = files
|
||||
# read imgs while ignoring orientations
|
||||
img = mmcv.imread(img_file, 'unchanged')
|
||||
|
||||
img_info = dict(
|
||||
file_name=osp.join(osp.basename(img_file)),
|
||||
height=img.shape[0],
|
||||
width=img.shape[1],
|
||||
segm_file=osp.join(osp.basename(gt_file)))
|
||||
|
||||
if osp.splitext(gt_file)[1] == '.txt':
|
||||
img_info = load_txt_info(gt_file, img_info)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def load_txt_info(gt_file, img_info):
|
||||
"""Collect the annotation information.
|
||||
|
||||
The annotation format is as the following:
|
||||
left, top, right, bottom, "transcription"
|
||||
|
||||
Args:
|
||||
gt_file (str): The path to ground-truth
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
|
||||
Returns:
|
||||
img_info (dict): The dict of the img and annotation information
|
||||
"""
|
||||
anno_info = []
|
||||
with open(gt_file, 'r') as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
xmin, ymin, xmax, ymax = line.split(',')[0:4]
|
||||
x = max(0, int(xmin))
|
||||
y = max(0, int(ymin))
|
||||
w = int(xmax) - x
|
||||
h = int(ymax) - y
|
||||
bbox = [x, y, w, h]
|
||||
segmentation = [x, y, x + w, y, x + w, y + h, x, y + h]
|
||||
|
||||
anno = dict(
|
||||
iscrowd=0,
|
||||
category_id=1,
|
||||
bbox=bbox,
|
||||
area=w * h,
|
||||
segmentation=[segmentation])
|
||||
anno_info.append(anno)
|
||||
img_info.update(anno_info=anno_info)
|
||||
|
||||
return img_info
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and test set of IC11')
|
||||
parser.add_argument('root_path', help='Root dir path of IC11')
|
||||
parser.add_argument(
|
||||
'--nproc', default=1, type=int, help='Number of process')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['training', 'test']:
|
||||
print(f'Processing {split} set...')
|
||||
with mmcv.Timer(print_tmpl='It takes {}s to convert annotation'):
|
||||
files = collect_files(
|
||||
osp.join(root_path, 'imgs', split),
|
||||
osp.join(root_path, 'annotations', split))
|
||||
image_infos = collect_annotations(files, nproc=args.nproc)
|
||||
convert_annotations(
|
||||
image_infos, osp.join(root_path,
|
||||
'instances_' + split + '.json'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
87
tools/data/textrecog/ic11_converter.py
Normal file
87
tools/data/textrecog/ic11_converter.py
Normal file
@ -0,0 +1,87 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import json
|
||||
import os.path as osp
|
||||
|
||||
from mmocr.utils.fileio import list_to_file
|
||||
|
||||
|
||||
def convert_annotations(root_path, split, format):
|
||||
"""Convert original annotations to mmocr format.
|
||||
|
||||
The annotation format is as the following:
|
||||
word_1.png, "flying"
|
||||
word_2.png, "today"
|
||||
word_3.png, "means"
|
||||
After this module, the annotation has been changed to the format below:
|
||||
txt:
|
||||
word_1.png flying
|
||||
word_2.png today
|
||||
word_3.png means
|
||||
|
||||
jsonl:
|
||||
{'filename': 'word_1.png', 'text': 'flying'}
|
||||
{'filename': 'word_2.png', 'text': 'today'}
|
||||
{'filename': 'word_3.png', 'text': 'means'}
|
||||
|
||||
Args:
|
||||
root_path (str): The root path of the dataset
|
||||
split (str): The split of dataset. Namely: Train or Test
|
||||
format (str): Annotation format, should be either 'txt' or 'jsonl'
|
||||
"""
|
||||
assert isinstance(root_path, str)
|
||||
assert isinstance(split, str)
|
||||
|
||||
lines = []
|
||||
with open(
|
||||
osp.join(root_path, 'annotations',
|
||||
f'Challenge1_{split}_Task3_GT.txt'),
|
||||
'r',
|
||||
encoding='"utf-8-sig') as f:
|
||||
annos = f.readlines()
|
||||
dst_image_root = osp.join(root_path, split)
|
||||
for anno in annos:
|
||||
# text may contain comma ','
|
||||
dst_img_name, word = anno.split(', "')
|
||||
word = word.replace('"\n', '')
|
||||
|
||||
if format == 'txt':
|
||||
lines.append(f'{osp.basename(dst_image_root)}/{dst_img_name} '
|
||||
f'{word}')
|
||||
elif format == 'jsonl':
|
||||
lines.append(
|
||||
json.dumps({
|
||||
'filename':
|
||||
f'{osp.basename(dst_image_root)}/{dst_img_name}',
|
||||
'text': word
|
||||
}))
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
list_to_file(osp.join(root_path, f'{split}_label.{format}'), lines)
|
||||
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Generate training and test set of IC11')
|
||||
parser.add_argument('root_path', help='Root dir path of IC11')
|
||||
parser.add_argument(
|
||||
'--format',
|
||||
default='jsonl',
|
||||
help='Use jsonl or string to format annotations',
|
||||
choices=['jsonl', 'txt'])
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
root_path = args.root_path
|
||||
|
||||
for split in ['Train', 'Test']:
|
||||
convert_annotations(root_path, split, args.format)
|
||||
print(f'{split} split converted.')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user