[DBNet] Add DBNet config

pull/1178/head
gaotongxiao 2022-05-31 09:33:44 +00:00
parent b585dbcdd7
commit 71d1a445c9
4 changed files with 159 additions and 57 deletions

View File

@ -1,3 +1,9 @@
preprocess_cfg = dict(
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_size_divisor=32)
model = dict(
type='DBNet',
backbone=dict(
@ -12,10 +18,9 @@ model = dict(
style='caffe'),
neck=dict(
type='FPNC', in_channels=[64, 128, 256, 512], lateral_channels=256),
bbox_head=dict(
det_head=dict(
type='DBHead',
in_channels=256,
loss=dict(type='DBLoss', alpha=5.0, beta=10.0, bbce_loss=True),
loss=dict(type='DBLoss'),
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
train_cfg=None,
test_cfg=None)
preprocess_cfg=preprocess_cfg)

View File

@ -1,3 +1,9 @@
preprocess_cfg = dict(
mean=[122.67891434, 116.66876762, 104.00698793],
std=[58.395, 57.12, 57.375],
to_rgb=True,
pad_size_divisor=32)
model = dict(
type='DBNet',
backbone=dict(
@ -14,10 +20,9 @@ model = dict(
stage_with_dcn=(False, True, True, True)),
neck=dict(
type='FPNC', in_channels=[256, 512, 1024, 2048], lateral_channels=256),
bbox_head=dict(
det_head=dict(
type='DBHead',
in_channels=256,
loss=dict(type='DBLoss', alpha=5.0, beta=10.0, bbce_loss=True),
loss=dict(type='DBLoss'),
postprocessor=dict(type='DBPostprocessor', text_repr_type='quad')),
train_cfg=None,
test_cfg=None)
preprocess_cfg=preprocess_cfg)

View File

@ -2,32 +2,78 @@ _base_ = [
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1200e.py',
'../../_base_/det_models/dbnet_r18_fpnc.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/det_pipelines/dbnet_pipeline.py'
]
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
train_pipeline_r18 = {{_base_.train_pipeline_r18}}
test_pipeline_1333_736 = {{_base_.test_pipeline_1333_736}}
train_pipeline_r18 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_polygon=True,
with_bbox=True,
with_label=True,
),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=32.0 / 255,
saturation=0.5),
dict(
type='ImgAug',
args=[['Fliplr', 0.5],
dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]),
dict(type='RandomCrop', min_side_ratio=0.1),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
dict(type='Pad', size=(640, 640)),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape'))
]
data = dict(
samples_per_gpu=16,
workers_per_gpu=8,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=train_list,
pipeline=train_pipeline_r18),
val=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline_1333_736),
test=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline_1333_736))
test_pipeline_1333_736 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(type='Resize', scale=(1333, 736), keep_ratio=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor',
'instances'))
]
evaluation = dict(interval=100, metric='hmean-iou')
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline_r18)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline_1333_736)
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')
test_evaluator = val_evaluator
visualizer = dict(type='TextDetLocalVisualizer', name='visualizer')

View File

@ -2,34 +2,80 @@ _base_ = [
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_sgd_1200e.py',
'../../_base_/det_models/dbnet_r50dcnv2_fpnc.py',
'../../_base_/det_datasets/icdar2015.py',
'../../_base_/det_pipelines/dbnet_pipeline.py'
]
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
train_pipeline_r50dcnv2 = {{_base_.train_pipeline_r50dcnv2}}
test_pipeline_4068_1024 = {{_base_.test_pipeline_4068_1024}}
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=20), )
load_from = 'checkpoints/textdet/dbnet/res50dcnv2_synthtext.pth'
data = dict(
samples_per_gpu=8,
workers_per_gpu=4,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset',
datasets=train_list,
pipeline=train_pipeline_r50dcnv2),
val=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline_4068_1024),
test=dict(
type='UniformConcatDataset',
datasets=test_list,
pipeline=test_pipeline_4068_1024))
train_pipeline_r50dcnv2 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(
type='LoadOCRAnnotations',
with_bbox=True,
with_polygon=True,
with_label=True,
),
dict(
type='TorchVisionWrapper',
op='ColorJitter',
brightness=32.0 / 255,
saturation=0.5),
dict(
type='ImgAug',
args=[['Fliplr', 0.5],
dict(cls='Affine', rotate=[-10, 10]), ['Resize', [0.5, 3.0]]]),
dict(type='RandomCrop', min_side_ratio=0.1),
dict(type='Resize', scale=(640, 640), keep_ratio=True),
dict(type='Pad', size=(640, 640)),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape'))
]
evaluation = dict(interval=100, metric='hmean-iou')
test_pipeline_4068_1024 = [
dict(type='LoadImageFromFile', color_type='color_ignore_orientation'),
dict(type='Resize', scale=(4068, 1024), keep_ratio=True),
dict(
type='PackTextDetInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'scale_factor',
'instances'))
]
dataset_type = 'OCRDataset'
data_root = 'data/icdar2015'
train_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_training.json',
data_prefix=dict(img_path='imgs/'),
filter_cfg=dict(filter_empty_gt=True, min_size=32),
pipeline=train_pipeline_r50dcnv2)
test_dataset = dict(
type=dataset_type,
data_root=data_root,
ann_file='instances_test.json',
data_prefix=dict(img_path='imgs/'),
test_mode=True,
pipeline=test_pipeline_4068_1024)
train_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=16,
num_workers=8,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
val_evaluator = dict(type='HmeanIOUMetric')
test_evaluator = val_evaluator
visualizer = dict(type='TextDetLocalVisualizer', name='visualizer')