[Refactor] CTCLoss

pull/1178/head
liukuikun 2022-05-27 01:51:29 +00:00 committed by gaotongxiao
parent 3aae157aec
commit 7582fdea41
4 changed files with 168 additions and 60 deletions

View File

@ -20,7 +20,6 @@ class BaseRecogLoss(nn.Module):
generated from decoder. Defaults to 40.
letter_case (str): There are three options to alter the letter cases
of gt texts:
- unchanged: Do not change gt texts.
- upper: Convert gt texts into uppercase characters.
- lower: Convert gt texts into lowercase characters.
@ -61,7 +60,7 @@ class BaseRecogLoss(nn.Module):
- indexes (torch.LongTensor): Character indexes representing gt
texts.
- padding_indexes (torch.LongTensor) Character indexes
- padded_indexes (torch.LongTensor) Character indexes
representing gt texts, following several padding_idxs until
reaching the length of ``max_seq_len``.
"""
@ -88,14 +87,14 @@ class BaseRecogLoss(nn.Module):
slice_end = src_target.size(0) - 1
src_target = src_target[slice_start:slice_end]
if self.dictionary.padding_idx is not None:
padding_indexes = (torch.ones(self.max_seq_len) *
self.dictionary.padding_idx).long()
padded_indexes = (torch.ones(self.max_seq_len) *
self.dictionary.padding_idx).long()
char_num = min(src_target.size(0), self.max_seq_len)
padding_indexes[:char_num] = src_target[:char_num]
padded_indexes[:char_num] = src_target[:char_num]
else:
padding_indexes = src_target
padded_indexes = src_target
# put in DataSample
data_sample.gt_text.indexes = indexes
data_sample.gt_text.padding_indexes = padding_indexes
data_sample.gt_text.padded_indexes = padded_indexes
return data_samples

View File

@ -1,19 +1,31 @@
# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Dict, Sequence, Union
import torch
import torch.nn as nn
from mmocr.core.data_structures import TextRecogDataSample
from mmocr.models.textrecog.dictionary.dictionary import Dictionary
from mmocr.registry import MODELS
from .base_recog_loss import BaseRecogLoss
@MODELS.register_module()
class CTCLoss(nn.Module):
class CTCLoss(BaseRecogLoss):
"""Implementation of loss module for CTC-loss based text recognition.
Args:
dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
the instance of `Dictionary`.
letter_case (str): There are three options to alter the letter cases
of gt texts:
- unchanged: Do not change gt texts.
- upper: Convert gt texts into uppercase characters.
- lower: Convert gt texts into lowercase characters.
Usually, it only works for English characters. Defaults to
'unchanged'.
flatten (bool): If True, use flattened targets, else padded targets.
blank (int): Blank label. Default 0.
reduction (str): Specifies the reduction to apply to the output,
should be one of the following: ('none', 'mean', 'sum').
zero_infinity (bool): Whether to zero infinite losses and
@ -23,81 +35,93 @@ class CTCLoss(nn.Module):
"""
def __init__(self,
flatten=True,
blank=0,
reduction='mean',
zero_infinity=False,
**kwargs):
super().__init__()
dictionary: Union[Dict, Dictionary],
letter_case: str = 'unchanged',
flatten: bool = True,
reduction: str = 'mean',
zero_infinity: bool = False,
**kwargs) -> None:
super().__init__(dictionary=dictionary, letter_case=letter_case)
assert isinstance(flatten, bool)
assert isinstance(blank, int)
assert isinstance(reduction, str)
assert isinstance(zero_infinity, bool)
self.flatten = flatten
self.blank = blank
self.ctc_loss = nn.CTCLoss(
blank=blank, reduction=reduction, zero_infinity=zero_infinity)
blank=self.dictionary.padding_idx,
reduction=reduction,
zero_infinity=zero_infinity)
def forward(self, outputs, targets_dict, img_metas=None):
def forward(self, outputs: torch.Tensor,
data_samples: Sequence[TextRecogDataSample]) -> Dict:
"""
Args:
outputs (Tensor): A raw logit tensor of shape :math:`(N, T, C)`.
targets_dict (dict): A dict with 3 keys ``target_lengths``,
``flatten_targets`` and ``targets``.
- | ``target_lengths`` (Tensor): A tensor of shape :math:`(N)`.
Each item is the length of a word.
- | ``flatten_targets`` (Tensor): Used if ``self.flatten=True``
(default). A tensor of shape
(sum(targets_dict['target_lengths'])). Each item is the
index of a character.
- | ``targets`` (Tensor): Used if ``self.flatten=False``. A
tensor of :math:`(N, T)`. Empty slots are padded with
``self.blank``.
img_metas (dict): A dict that contains meta information of input
images. Preferably with the key ``valid_ratio``.
data_samples (list[TextRecogDataSample]): List of
``TextRecogDataSample`` which are processed by ``get_target``.
Returns:
dict: The loss dict with key ``loss_ctc``.
"""
valid_ratios = None
if img_metas is not None:
if data_samples is not None:
valid_ratios = [
img_meta.get('valid_ratio', 1.0) for img_meta in img_metas
img_meta.get('valid_ratio', 1.0) for img_meta in data_samples
]
outputs = torch.log_softmax(outputs, dim=2)
bsz, seq_len = outputs.size(0), outputs.size(1)
outputs_for_loss = outputs.permute(1, 0, 2).contiguous() # T * N * C
if self.flatten:
targets = targets_dict['flatten_targets']
else:
targets = torch.full(
size=(bsz, seq_len), fill_value=self.blank, dtype=torch.long)
for idx, tensor in enumerate(targets_dict['targets']):
valid_len = min(tensor.size(0), seq_len)
targets[idx, :valid_len] = tensor[:valid_len]
target_lengths = targets_dict['target_lengths']
targets = [data_sample.gt_text.indexes for data_sample in data_samples]
target_lengths = torch.IntTensor([len(t) for t in targets])
target_lengths = torch.clamp(target_lengths, min=1, max=seq_len).long()
input_lengths = torch.full(
size=(bsz, ), fill_value=seq_len, dtype=torch.long)
if not self.flatten and valid_ratios is not None:
input_lengths = [
math.ceil(valid_ratio * seq_len)
for valid_ratio in valid_ratios
]
input_lengths = torch.Tensor(input_lengths).long()
if self.flatten:
targets = torch.cat(targets)
else:
padded_targets = torch.full(
size=(bsz, seq_len),
fill_value=self.dictionary.padding_idx,
dtype=torch.long)
for idx, valid_len in enumerate(target_lengths):
padded_targets[idx, :valid_len] = targets[idx][:valid_len]
targets = padded_targets
if valid_ratios is not None:
input_lengths = [
math.ceil(valid_ratio * seq_len)
for valid_ratio in valid_ratios
]
input_lengths = torch.Tensor(input_lengths).long()
loss_ctc = self.ctc_loss(outputs_for_loss, targets, input_lengths,
target_lengths)
losses = dict(loss_ctc=loss_ctc)
return losses
def get_targets(
self, data_samples: Sequence[TextRecogDataSample]
) -> Sequence[TextRecogDataSample]:
"""Target generator.
Args:
data_samples (list[TextRecogDataSample]): It usually includes
``gt_text`` information.
Returns:
list[TextRecogDataSample]: updated data_samples. It will add two
key in data_sample:
- indexes (torch.LongTensor): The index corresponding to the item.
"""
for data_sample in data_samples:
text = data_sample.gt_text.item
if self.letter_case in ['upper', 'lower']:
text = getattr(text, self.letter_case)()
indexes = self.dictionary.str2idx(text)
indexes = torch.IntTensor(indexes)
data_sample.gt_text.indexes = indexes
return data_samples

View File

@ -76,7 +76,7 @@ class TestBaseRecogLoss(TestCase):
torch.LongTensor([0, 1, 2, 3]))
padding_idx = dictionary.padding_idx
assert self._equal(
target_data_samples[0].gt_text.padding_indexes,
target_data_samples[0].gt_text.padded_indexes,
torch.LongTensor([
dictionary.start_idx, 0, 1, 2, 3, dictionary.end_idx,
padding_idx, padding_idx, padding_idx, padding_idx
@ -95,7 +95,7 @@ class TestBaseRecogLoss(TestCase):
assert self._equal(target_data_samples[0].gt_text.indexes,
torch.LongTensor([0, 1, 2, 3]))
padding_idx = dictionary.padding_idx
assert self._equal(target_data_samples[0].gt_text.padding_indexes,
assert self._equal(target_data_samples[0].gt_text.padded_indexes,
torch.LongTensor([0, 1, 2]))
dict_cfg = dict(
@ -112,7 +112,7 @@ class TestBaseRecogLoss(TestCase):
target_data_samples = base_recog_loss.get_targets([data_sample])
assert self._equal(target_data_samples[0].gt_text.indexes,
torch.LongTensor([0, 1, 2, 3]))
assert self._equal(target_data_samples[0].gt_text.padding_indexes,
assert self._equal(target_data_samples[0].gt_text.padded_indexes,
torch.LongTensor([0, 1, 2, 3]))
target_data_samples = base_recog_loss.get_targets([])

View File

@ -0,0 +1,85 @@
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from unittest import TestCase
import torch
from mmengine.data import LabelData
from mmocr.core.data_structures import TextRecogDataSample
from mmocr.models.textrecog.dictionary import Dictionary
from mmocr.models.textrecog.losses import CTCLoss
class TestCTCLoss(TestCase):
def test_ctc_loss(self):
tmp_dir = tempfile.TemporaryDirectory()
# create dummy data
dict_file = osp.join(tmp_dir.name, 'fake_chars.txt')
self._create_dummy_dict_file(dict_file)
dictionary = Dictionary(dict_file=dict_file, with_padding=True)
with self.assertRaises(AssertionError):
CTCLoss(dictionary=dictionary, flatten='flatten')
with self.assertRaises(AssertionError):
CTCLoss(dictionary=dictionary, reduction=1)
with self.assertRaises(AssertionError):
CTCLoss(dictionary=dictionary, zero_infinity='zero')
outputs = torch.zeros(2, 40, 37)
datasample1 = TextRecogDataSample()
gt_text1 = LabelData(item='hell')
datasample1.gt_text = gt_text1
datasample2 = datasample1.clone()
gt_text2 = LabelData(item='owrd')
datasample2.gt_text = gt_text2
data_samples = [datasample1, datasample2]
ctc_loss = CTCLoss(dictionary=dictionary)
data_samples = ctc_loss.get_targets(data_samples)
losses = ctc_loss(outputs, data_samples)
assert isinstance(losses, dict)
assert 'loss_ctc' in losses
assert torch.allclose(losses['loss_ctc'],
torch.tensor(losses['loss_ctc'].item()).float())
# test flatten = False
ctc_loss = CTCLoss(dictionary=dictionary, flatten=False)
losses = ctc_loss(outputs, data_samples)
assert isinstance(losses, dict)
assert 'loss_ctc' in losses
assert torch.allclose(losses['loss_ctc'],
torch.tensor(losses['loss_ctc'].item()).float())
tmp_dir.cleanup()
def _create_dummy_dict_file(self, dict_file):
chars = list('helowrd')
with open(dict_file, 'w') as fw:
for char in chars:
fw.write(char + '\n')
def test_get_targets(self):
tmp_dir = tempfile.TemporaryDirectory()
# create dummy data
dict_file = osp.join(tmp_dir.name, 'fake_chars.txt')
self._create_dummy_dict_file(dict_file)
dictionary = Dictionary(dict_file=dict_file, with_padding=True)
loss = CTCLoss(dictionary=dictionary, letter_case='lower')
# test encode str to tensor
datasample1 = TextRecogDataSample()
gt_text1 = LabelData(item='hell')
datasample1.gt_text = gt_text1
datasample2 = datasample1.clone()
gt_text2 = LabelData(item='owrd')
datasample2.gt_text = gt_text2
data_samples = [datasample1, datasample2]
expect_tensor1 = torch.IntTensor([0, 1, 2, 2])
expect_tensor2 = torch.IntTensor([3, 4, 5, 6])
data_samples = loss.get_targets(data_samples)
self.assertTrue(
torch.allclose(data_samples[0].gt_text.indexes, expect_tensor1))
self.assertTrue(
torch.allclose(data_samples[1].gt_text.indexes, expect_tensor2))
tmp_dir.cleanup()