[Fix] Replace SyncBN with BN for inference (#420)

* add revert_sync_batchnorm

* replace SyncBN in inference and test scripts

* add tests

* hide BatchNormXd
This commit is contained in:
Tong Gao 2021-08-10 22:19:17 +08:00 committed by GitHub
parent 532e8f808d
commit 7bbb14f0d1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 79 additions and 7 deletions

View File

@ -9,6 +9,7 @@ from .fileio import list_from_file, list_to_file
from .img_util import drop_orientation, is_not_png
from .lmdb_util import lmdb_converter
from .logger import get_root_logger
from .model import revert_sync_batchnorm
from .string_util import StringStrip
__all__ = [
@ -17,5 +18,5 @@ __all__ = [
'equal_len', 'is_2dlist', 'valid_boundary', 'lmdb_converter',
'drop_orientation', 'convert_annotations', 'is_not_png', 'list_to_file',
'list_from_file', 'is_on_same_line', 'stitch_boxes_into_lines',
'StringStrip'
'StringStrip', 'revert_sync_batchnorm'
]

49
mmocr/utils/model.py Normal file
View File

@ -0,0 +1,49 @@
import torch
class _BatchNormXd(torch.nn.modules.batchnorm._BatchNorm):
"""A general BatchNorm layer without input dimension check.
Reproduced from @kapily's work:
(https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)
The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc
is `_check_input_dim` that is designed for tensor sanity checks.
The check has been bypassed in this class for the convenience of converting
SyncBatchNorm.
"""
def _check_input_dim(self, input):
return
def revert_sync_batchnorm(module):
"""Helper function to convert all `SyncBatchNorm` layers in the model to
`BatchNormXd` layers.
Reproduced from @kapily's work:
(https://github.com/pytorch/pytorch/issues/41081#issuecomment-783961547)
Args:
module (nn.Module): The module containing `SyncBatchNorm` layers.
Returns:
module_output: The converted module with `BatchNormXd` layers.
"""
module_output = module
if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm):
module_output = _BatchNormXd(module.num_features, module.eps,
module.momentum, module.affine,
module.track_running_stats)
if module.affine:
with torch.no_grad():
module_output.weight = module.weight
module_output.bias = module.bias
module_output.running_mean = module.running_mean
module_output.running_var = module.running_var
module_output.num_batches_tracked = module.num_batches_tracked
if hasattr(module, 'qconfig'):
module_output.qconfig = module.qconfig
for name, child in module.named_children():
module_output.add_module(name, revert_sync_batchnorm(child))
del module
return module_output

View File

@ -19,6 +19,7 @@ from mmocr.datasets.pipelines.crop import crop_img
from mmocr.models import build_detector
from mmocr.utils.box_util import stitch_boxes_into_lines
from mmocr.utils.fileio import list_from_file
from mmocr.utils.model import revert_sync_batchnorm
# Parse CLI arguments
@ -324,6 +325,7 @@ class MMOCR:
self.detect_model = init_detector(
det_config, det_ckpt, device=self.device)
self.detect_model = revert_sync_batchnorm(self.detect_model)
self.recog_model = None
if self.tr:
@ -338,6 +340,7 @@ class MMOCR:
self.recog_model = init_detector(
recog_config, recog_ckpt, device=self.device)
self.recog_model = revert_sync_batchnorm(self.recog_model)
self.kie_model = None
if self.kie:
@ -352,6 +355,7 @@ class MMOCR:
kie_cfg = Config.fromfile(kie_config)
self.kie_model = build_detector(
kie_cfg.model, test_cfg=kie_cfg.get('test_cfg'))
self.kie_model = revert_sync_batchnorm(self.kie_model)
self.kie_model.cfg = kie_cfg
load_checkpoint(self.kie_model, kie_ckpt, map_location=self.device)

View File

@ -9,6 +9,7 @@ import pytest
import torch
import mmocr.core.evaluation.utils as utils
from mmocr.utils import revert_sync_batchnorm
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300),
@ -192,10 +193,10 @@ def test_ocr_mask_rcnn(cfg_file):
def test_panet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 2
@ -247,10 +248,10 @@ def test_panet(cfg_file):
def test_psenet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 7
@ -289,10 +290,10 @@ def test_psenet(cfg_file):
def test_dbnet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
detector = detector.cuda()
input_shape = (1, 3, 224, 224)
num_kernels = 7
@ -338,10 +339,10 @@ def test_dbnet(cfg_file):
def test_textsnake(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 1
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
@ -394,10 +395,10 @@ def test_textsnake(cfg_file):
def test_fcenet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
detector = detector.cuda()
fourier_degree = 5
@ -451,10 +452,10 @@ def test_fcenet(cfg_file):
def test_drrg(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
model['backbone']['norm_cfg']['type'] = 'BN'
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 1

View File

@ -0,0 +1,15 @@
import pytest
import torch
from mmcv.cnn.bricks import ConvModule
from mmocr.utils import revert_sync_batchnorm
def test_revert_sync_batchnorm():
conv = ConvModule(3, 8, 2, norm_cfg=dict(type='SyncBN'))
x = torch.randn(1, 3, 10, 10)
with pytest.raises(ValueError):
y = conv(x)
conv = revert_sync_batchnorm(conv)
y = conv(x)
assert y.shape == (1, 8, 9, 9)

View File

@ -16,6 +16,7 @@ from mmdet.datasets import replace_ImageToTensor
from mmocr.apis.inference import disable_text_recog_aug_test
from mmocr.datasets import build_dataloader, build_dataset
from mmocr.models import build_detector
from mmocr.utils import revert_sync_batchnorm
def parse_args():
@ -196,6 +197,7 @@ def main():
# build the model and load checkpoint
cfg.model.train_cfg = None
model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
model = revert_sync_batchnorm(model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)