mirror of https://github.com/open-mmlab/mmocr.git
[Enchancement] Only keep meta and state_dict when publish model (#1729)
* Only keep meta and state_dict when publish model * simpy codepull/1731/head
parent
3240bace4a
commit
7cea6a6419
|
@ -1,9 +1,9 @@
|
|||
#!/usr/bin/env python
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import argparse
|
||||
import subprocess
|
||||
|
||||
import torch
|
||||
from mmengine.logging import print_log
|
||||
|
||||
|
||||
def parse_args():
|
||||
|
@ -11,28 +11,46 @@ def parse_args():
|
|||
description='Process a checkpoint to be published')
|
||||
parser.add_argument('in_file', help='input checkpoint filename')
|
||||
parser.add_argument('out_file', help='output checkpoint filename')
|
||||
parser.add_argument(
|
||||
'--save-keys',
|
||||
nargs='+',
|
||||
type=str,
|
||||
default=['meta', 'state_dict'],
|
||||
help='keys to save in the published checkpoint')
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def process_checkpoint(in_file, out_file):
|
||||
def process_checkpoint(in_file, out_file, save_keys=['meta', 'state_dict']):
|
||||
checkpoint = torch.load(in_file, map_location='cpu')
|
||||
# remove optimizer for smaller file size
|
||||
if 'optimizer' in checkpoint:
|
||||
del checkpoint['optimizer']
|
||||
|
||||
# only keep `meta` and `state_dict` for smaller file size
|
||||
ckpt_keys = list(checkpoint.keys())
|
||||
for k in ckpt_keys:
|
||||
if k not in save_keys:
|
||||
print_log(
|
||||
f'Key `{k}` will be removed because it is not in '
|
||||
f'save_keys. If you want to keep it, '
|
||||
f'please set --save-keys.',
|
||||
logger='current')
|
||||
checkpoint.pop(k, None)
|
||||
|
||||
# if it is necessary to remove some sensitive data in checkpoint['meta'],
|
||||
# add the code here.
|
||||
if 'meta' in checkpoint:
|
||||
checkpoint['meta'] = {'CLASSES': 0}
|
||||
torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False)
|
||||
if torch.__version__ >= '1.6':
|
||||
torch.save(checkpoint, out_file, _use_new_zipfile_serialization=False)
|
||||
else:
|
||||
torch.save(checkpoint, out_file)
|
||||
sha = subprocess.check_output(['sha256sum', out_file]).decode()
|
||||
final_file = out_file.rstrip('.pth') + f'-{sha[:8]}.pth'
|
||||
subprocess.Popen(['mv', out_file, final_file])
|
||||
print_log(
|
||||
f'The published model is saved at {final_file}.', logger='current')
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
process_checkpoint(args.in_file, args.out_file)
|
||||
process_checkpoint(args.in_file, args.out_file, args.save_keys)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
Loading…
Reference in New Issue