[Doc] add opendatalab download link (#1753)

* add opendatalab link

* fix

* fix

* ip

---------

Co-authored-by: gaotongxiao <gaotongxiao@gmail.com>
pull/1786/head
jorie-peng 2023-03-14 15:55:53 +08:00 committed by GitHub
parent 47f54304f5
commit 7ef34c4407
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 40 additions and 0 deletions

View File

@ -39,6 +39,8 @@ python tools/dataset_converters/prepare_dataset.py icdar2015 totaltext --task te
To check the supported datasets of Dataset Preparer, please refer to [Dataset Zoo](./datasetzoo.md). Some of other datasets that need to be prepared manually are listed in [Text Detection](./det.md) and [Text Recognition](./recog.md).
For users in China, more datasets can be downloaded from the opensource dataset platform: [OpenDataLab](https://opendatalab.com/). After downloading the data, you can place the files listed in `data_obtainer.save_name` in `data/cache` and rerun the script.
## Advanced Usage
### LMDB Format

View File

@ -46,6 +46,14 @@ This page is a manual preparation guide for datasets not yet supported by [Datas
# Default output format [None]
```
For users in China, these datasets can also be downloaded from [OpenDataLab](https://opendatalab.com/) with high speed:
- [CTW1500](https://opendatalab.com/SCUT-CTW1500?source=OpenMMLab%20GitHub)
- [ICDAR2013](https://opendatalab.com/ICDAR_2013?source=OpenMMLab%20GitHub)
- [ICDAR2015](https://opendatalab.com/ICDAR2015?source=OpenMMLab%20GitHub)
- [Totaltext](https://opendatalab.com/TotalText?source=OpenMMLab%20GitHub)
- [MSRA-TD500](https://opendatalab.com/MSRA-TD500?source=OpenMMLab%20GitHub)
## Important Note
```{note}

View File

@ -49,6 +49,16 @@ This page is a manual preparation guide for datasets not yet supported by [Datas
# Default output format [None]
```
For users in China, these datasets can also be downloaded from [OpenDataLab](https://opendatalab.com/) with high speed:
- [icdar_2013](https://opendatalab.com/ICDAR_2013?source=OpenMMLab%20GitHub)
- [icdar_2015](https://opendatalab.com/ICDAR2015?source=OpenMMLab%20GitHub)
- [IIIT5K](https://opendatalab.com/IIIT_5K?source=OpenMMLab%20GitHub)
- [ct80](https://opendatalab.com/CUTE_80?source=OpenMMLab%20GitHub)
- [svt](https://opendatalab.com/SVT?source=OpenMMLab%20GitHub)
- [Totaltext](https://opendatalab.com/TotalText?source=OpenMMLab%20GitHub)
- [IAM](https://opendatalab.com/IAM_Handwriting?source=OpenMMLab%20GitHub)
## ICDAR 2011 (Born-Digital Images)
- Step1: Download `Challenge1_Training_Task3_Images_GT.zip`, `Challenge1_Test_Task3_Images.zip`, and `Challenge1_Test_Task3_GT.txt` from [homepage](https://rrc.cvc.uab.es/?ch=1&com=downloads) `Task 1.3: Word Recognition (2013 edition)`.

View File

@ -38,6 +38,8 @@ python tools/dataset_converters/prepare_dataset.py icdar2015 totaltext --task te
进一步了解 Dataset Preparer 支持的数据集,您可以浏览[支持的数据集文档](./datasetzoo.md)。一些需要手动准备的数据集也列在了 [文字检测](./det.md) 和 [文字识别](./recog.md) 内。
对于中国境内的用户,我们也推荐通过开源数据平台[OpenDataLab](https://opendatalab.com/)来下载数据,以获得更好的下载体验。数据下载后,参考脚本中 `data_obtainer``save_name` 字段,将文件放在 `data/cache/` 下并重新运行脚本即可。
## 进阶用法
### LMDB 格式

View File

@ -20,6 +20,14 @@
| TextOCR | [下载地址](https://textvqa.org/textocr/dataset) | - | - | - |
| Totaltext | [下载地址](https://github.com/cs-chan/Total-Text-Dataset) | - | - | - |
对于中国境内的用户,我们也推荐使用开源数据平台[OpenDataLab](https://opendatalab.com/)来获取这些数据集,以获得更好的下载体验:
- [CTW1500](https://opendatalab.com/SCUT-CTW1500?source=OpenMMLab%20GitHub)
- [ICDAR2013](https://opendatalab.com/ICDAR_2013?source=OpenMMLab%20GitHub)
- [ICDAR2015](https://opendatalab.com/ICDAR2015?source=OpenMMLab%20GitHub)
- [Totaltext](https://opendatalab.com/TotalText?source=OpenMMLab%20GitHub)
- [MSRA-TD500](https://opendatalab.com/MSRA-TD500?source=OpenMMLab%20GitHub)
## 重要提醒
```{note}

View File

@ -103,6 +103,16 @@
(\*) 注:由于官方的下载地址已经无法访问,我们提供了一个非官方的地址以供参考,但我们无法保证数据的准确性。
对于中国境内的用户,我们也推荐使用开源数据平台[OpenDataLab](https://opendatalab.com/)来获取这些数据集,以获得更好的下载体验:
- [icdar_2013](https://opendatalab.com/ICDAR_2013?source=OpenMMLab%20GitHub)
- [icdar_2015](https://opendatalab.com/ICDAR2015?source=OpenMMLab%20GitHub)
- [IIIT5K](https://opendatalab.com/IIIT_5K?source=OpenMMLab%20GitHub)
- [ct80](https://opendatalab.com/CUTE_80?source=OpenMMLab%20GitHub)
- [svt](https://opendatalab.com/SVT?source=OpenMMLab%20GitHub)
- [Totaltext](https://opendatalab.com/TotalText?source=OpenMMLab%20GitHub)
- [IAM](https://opendatalab.com/IAM_Handwriting?source=OpenMMLab%20GitHub)
## 准备步骤
### ICDAR 2013