Merge pull request #38 from cuhk-hbsun/hbsun/rename

rename datasets.md
pull/44/head
jeffreykuang 2021-04-09 22:43:37 +08:00 committed by GitHub
commit 88ed519ddf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 112 additions and 31 deletions

View File

@ -15,11 +15,7 @@ RUN apt-get update && apt-get install -y git ninja-build libglib2.0-0 libsm6 lib
RUN conda clean --all
RUN pip install mmcv-full==1.2.6+torch1.5.0+cu101 -f https://download.openmmlab.com/mmcv/dist/index.html
RUN git clone https://github.com/open-mmlab/mmdetection.git /mmdet
WORKDIR /mmdet
RUN git checkout -b v2.9.0 v2.9.0
RUN pip install -r requirements.txt
RUN pip install .
RUN pip install mmdet==2.9.0
RUN git clone https://github.com/open-mmlab/mmocr.git /mmocr
WORKDIR /mmocr

View File

@ -23,19 +23,102 @@ mmocr.utils
mmocr.models
---------------
common
common_backbones
^^^^^^^^^^^
.. automodule:: mmocr.models.common
.. automodule:: mmocr.models.common.backbones
:members:
textdet
^^^^^^^^^^^
.. automodule:: mmocr.models.textdet
.. automodule:: mmocr.models.common.losses
:members:
textrecog
textdet_dense_heads
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog
.. automodule:: mmocr.models.textdet.dense_heads
:members:
textdet_necks
^^^^^^^^^^^
.. automodule:: mmocr.models.textdet.necks
:members:
textdet_detectors
^^^^^^^^^^^
.. automodule:: mmocr.models.textdet.detectors
:members:
textdet_losses
^^^^^^^^^^^
.. automodule:: mmocr.models.textdet.losses
:members:
textdet_postprocess
^^^^^^^^^^^
.. automodule:: mmocr.models.textdet.postprocess
:members:
textrecog_recognizer
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.recognizer
:members:
textrecog_backbones
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.backbones
:members:
textrecog_necks
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.necks
:members:
textrecog_heads
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.heads
:members:
textrecog_convertors
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.convertors
:members:
textrecog_encoders
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.encoders
:members:
textrecog_decoders
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.decoders
:members:
textrecog_losses
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.losses
:members:
textrecog_backbones
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.backbones
:members:
textrecog_layers
^^^^^^^^^^^
.. automodule:: mmocr.models.textrecog.layers
:members:
kie_extractors
^^^^^^^^^^^
.. automodule:: mmocr.models.kie.extractors
:members:
kie_heads
^^^^^^^^^^^
.. automodule:: mmocr.models.kie.heads
:members:
kie_losses
^^^^^^^^^^^
.. automodule:: mmocr.models.kie.losses
:members:
@ -49,20 +132,23 @@ datasets
.. automodule:: mmocr.datasets.base_dataset
:members:
.. automodule:: mmocr.datasets.icdar_dataset
:members:
.. automodule:: mmocr.datasets.ocr_dataset
:members:
.. automodule:: mmocr.datasets.ocr_seg_dataset
:members:
.. automodule:: mmocr.datasets.text_det_dataset
:members:
.. automodule:: mmocr.datasets.kie_dataset
:members:
pipelines
^^^^^^^^^^^
.. automodule:: mmocr.datasets.pipelines
:members:
.. automodule:: mmocr.datasets.pipelines.transforms
:members:
.. automodule:: mmocr.datasets.pipelines.ocr_transforms
:members:
targets
^^^^^^^^^^^
.. automodule:: mmocr.datasets.pipelines.textdet_targets
:members:

View File

@ -50,7 +50,6 @@ autodoc_mock_imports = [
'matplotlib',
'Polygon',
'cv2',
'mmcv',
'numpy',
'pyclipper',
'pycocotools',

View File

@ -37,7 +37,7 @@ It will save both the prediction results and visualized images to `${RESULTS_DIR
### Test a Dataset
MMOCR implements **distributed** testing with `MMDistributedDataParallel`. (Please refer to [datasets.md](datasets.md) to prepare your datasets)
MMOCR implements **distributed** testing with `MMDistributedDataParallel`. (Please refer to [dataset.md](dataset.md) to prepare your datasets)
#### Test with Single/Multiple GPUs
@ -78,7 +78,7 @@ You can check [slurm_test.sh](https://github.com/open-mmlab/mmocr/blob/master/to
## Train a Model
MMOCR implements **distributed** training with `MMDistributedDataParallel`. (Please refer to [datasets.md](datasets.md) to prepare your datasets)
MMOCR implements **distributed** training with `MMDistributedDataParallel`. (Please refer to [dataset.md](dataset.md) to prepare your datasets)
All outputs (log files and checkpoints) will be saved to a working directory specified by `work_dir` in the config file.

View File

@ -23,7 +23,7 @@ Welcome to MMOCR's documentation!
:maxdepth: 2
:caption: Datasets
datasets.md
dataset.md
.. toctree::
:maxdepth: 2

View File

@ -129,7 +129,7 @@ docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/mmocr/data mmocr
## Prepare Datasets
It is recommended to symlink the dataset root to `mmocr/data`. Please refer to [datasets.md](datasets.md) to prepare your datasets.
It is recommended to symlink the dataset root to `mmocr/data`. Please refer to [dataset.md](dataset.md) to prepare your datasets.
If your folder structure is different, you may need to change the corresponding paths in config files.
The `mmocr` folder is organized as follows:

View File

@ -85,7 +85,7 @@ modelzoo = f"""
* Number of papers: {len(allpapers)}
{countstr}
For supported datasets, see [datasets overview](datasets.md).
For supported datasets, see [datasets overview](dataset.md).
{msglist}
"""

View File

@ -1,4 +1,4 @@
recommonmark
sphinx
sphinx==v2.4.4
sphinx_markdown_tables
sphinx_rtd_theme