mirror of https://github.com/open-mmlab/mmocr.git
[Docs] Training & Testing Tutorials (#1331)
* zh-cn train & test tutorial * add En * fix comments * Update docs/en/user_guides/train_test.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com>pull/1352/head
parent
8c904127a8
commit
8b32ea6fa9
Binary file not shown.
After Width: | Height: | Size: 192 KiB |
Binary file not shown.
After Width: | Height: | Size: 147 KiB |
Binary file not shown.
After Width: | Height: | Size: 6.7 KiB |
|
@ -1 +1,310 @@
|
|||
# Train and Test
|
||||
# Training and Testing
|
||||
|
||||
To meet diverse requirements, MMOCR supports training and testing models on various devices, including PCs, work stations, computation clusters, etc.
|
||||
|
||||
## Single GPU Training and Testing
|
||||
|
||||
### Training
|
||||
|
||||
`tools/train.py` provides the basic training service. MMOCR recommends using GPUs for model training and testing, but it still enables CPU-Only training and testing. For example, the following commands demonstrate how to train a DBNet model using a single GPU or CPU.
|
||||
|
||||
```bash
|
||||
# Train the specified MMOCR model by calling tools/train.py
|
||||
CUDA_VISIBLE_DEVICES= python tools/train.py ${CONFIG_FILE} [PY_ARGS]
|
||||
|
||||
# Training
|
||||
# Example 1: Training DBNet with CPU
|
||||
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py
|
||||
|
||||
# Example 2: Specify to train DBNet with gpu:0, specify the working directory as dbnet/, and turn on mixed precision (amp) training
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py --work-dir dbnet/ --amp
|
||||
```
|
||||
|
||||
```{note}
|
||||
If multiple GPUs are available, you can specify a certain GPU, e.g. the third one, by setting CUDA_VISIBLE_DEVICES=3.
|
||||
```
|
||||
|
||||
The following table lists all the arguments supported by `train.py`. Args without the `--` prefix are mandatory, while others are optional.
|
||||
|
||||
| ARGS | Type | Description |
|
||||
| --------------- | ---- | --------------------------------------------------------------------------- |
|
||||
| config | str | (required)Path to config. |
|
||||
| --work-dir | str | Specify the working directory for the training logs and models checkpoints. |
|
||||
| --resume | bool | Whether to resume training from the latest checkpoint. |
|
||||
| --amp | bool | Whether to use automatic mixture precision for training. |
|
||||
| --auto-scale-lr | bool | Whether to use automatic learning rate scaling. |
|
||||
| --cfg-options | str | Override some settings in the configs. [Example](<>) |
|
||||
| --launcher | str | Option for launcher,\['none', 'pytorch', 'slurm', 'mpi'\]. |
|
||||
| --local_rank | int | Rank of local machine,used for distributed training,defaults to 0。 |
|
||||
|
||||
### Test
|
||||
|
||||
`tools/test.py` provides the basic testing service, which is used in a similar way to the training script. For example, the following command demonstrates test a DBNet model on a single GPU or CPU.
|
||||
|
||||
```bash
|
||||
# Test a pretrained MMOCR model by calling tools/test.py
|
||||
CUDA_VISIBLE_DEVICES= python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS]
|
||||
|
||||
# Test
|
||||
# Example 1: Testing DBNet with CPU
|
||||
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth
|
||||
|
||||
# Example 2: Testing DBNet on gpu:0
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/test.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth
|
||||
```
|
||||
|
||||
The following table lists all the arguments supported by `test.py`. Args without the `--` prefix are mandatory, while others are optional.
|
||||
|
||||
| ARGS | Type | Description |
|
||||
| ------------- | ----- | -------------------------------------------------------------------- |
|
||||
| config | str | (required)Path to config. |
|
||||
| checkpoint | str | (required)The model to be tested. |
|
||||
| --work-dir | str | Specify the working directory for the logs. |
|
||||
| --save-preds | bool | Whether to save the predictions to a pkl file. |
|
||||
| --show | bool | Whether to visualize the predictions. |
|
||||
| --show-dir | str | Path to save the visualization results. |
|
||||
| --wait-time | float | Interval of visualization (s), defaults to 2. |
|
||||
| --cfg-options | str | Override some settings in the configs. [Example](<>) |
|
||||
| --launcher | str | Option for launcher,\['none', 'pytorch', 'slurm', 'mpi'\]. |
|
||||
| --local_rank | int | Rank of local machine,used for distributed training,defaults to 0. |
|
||||
|
||||
## Training and Testing with Multiple GPUs
|
||||
|
||||
For large models, distributed training or testing significantly improves the efficiency. For this purpose, MMOCR provides distributed scripts `tools/dist_train.sh` and `tools/dist_test.sh` implemented based on [MMDistributedDataParallel](mmengine.model.wrappers.MMDistributedDataParallel).
|
||||
|
||||
```bash
|
||||
# Training
|
||||
NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [PY_ARGS]
|
||||
|
||||
# Testing
|
||||
NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
|
||||
```
|
||||
|
||||
The following table lists the arguments supported by `dist_*.sh`.
|
||||
|
||||
| ARGS | Type | Description |
|
||||
| --------------- | ---- | --------------------------------------------------------------------------------------------- |
|
||||
| NNODES | int | The number of nodes. Defaults to 1. |
|
||||
| NODE_RANK | int | The rank of current node. Defaults to 0. |
|
||||
| PORT | int | The master port that will be used by rank 0 node, ranging from 0 to 65535. Defaults to 29500. |
|
||||
| MASTER_ADDR | str | The address of rank 0 node. Defaults to "127.0.0.1". |
|
||||
| CONFIG_FILE | str | (required)The path to config. |
|
||||
| CHECKPOINT_FILE | str | (required,only used in dist_test.sh)The path to checkpoint to be tested. |
|
||||
| GPU_NUM | int | (required)The number of GPUs to be used per node. |
|
||||
| \[PY_ARGS\] | str | Arguments to be parsed by tools/train.py and tools/test.py. |
|
||||
|
||||
These two scripts enable training and testing on **single-machine multi-GPU** or **multi-machine multi-GPU**. See the following example for usage.
|
||||
|
||||
### Single-machine Multi-GPU
|
||||
|
||||
The following commands demonstrate how to train and test with a specified number of GPUs on a **single machine** with multiple GPUs.
|
||||
|
||||
1. **Training**
|
||||
|
||||
Training DBNet using 4 GPUs on a single machine.
|
||||
|
||||
```bash
|
||||
tools/dist_train.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4
|
||||
```
|
||||
|
||||
2. **Testing**
|
||||
|
||||
Testing DBNet using 4 GPUs on a single machine.
|
||||
|
||||
```bash
|
||||
tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 4
|
||||
```
|
||||
|
||||
### Launching Multiple Tasks on Single Machine
|
||||
|
||||
For a workstation equipped with multiple GPUs, the user can launch multiple tasks simultaneously by specifying the GPU IDs. For example, the following command demonstrates how to test DBNet with GPU `[0, 1, 2, 3]` and train CRNN on GPU `[4, 5, 6, 7]`.
|
||||
|
||||
```bash
|
||||
# Specify gpu:0,1,2,3 for testing and assign port number 29500
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 4
|
||||
|
||||
# Specify gpu:4,5,6,7 for training and assign port number 29501
|
||||
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh configs/textrecog/crnn/crnn_academic_dataset.py 4
|
||||
```
|
||||
|
||||
```{note}
|
||||
`dist_train.sh` sets `MASTER_PORT` to `29500` by default. When other processes already occupy this port, the program will get a runtime error `RuntimeError: Address already in use`. In this case, you need to set `MASTER_PORT` to another free port number in the range of `(0~65535)`.
|
||||
```
|
||||
|
||||
### Multi-machine Multi-GPU Training and Testing
|
||||
|
||||
You can launch a task on multiple machines connected to the same network. MMOCR relies on `torch.distributed` package for distributed training. Find more information at PyTorch’s [launch utility](https://pytorch.org/docs/stable/distributed.html#launch-utility).
|
||||
|
||||
1. **Training**
|
||||
|
||||
The following command demonstrates how to train DBNet on two machines with a total of 4 GPUs.
|
||||
|
||||
```bash
|
||||
# Say that you want to launch the training job on two machines
|
||||
# On the first machine:
|
||||
NNODES=2 NODE_RANK=0 PORT=29500 MASTER_ADDR=10.140.0.169 tools/dist_train.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 2
|
||||
# On the second machine:
|
||||
NNODES=2 NODE_RANK=1 PORT=29501 MASTER_ADDR=10.140.0.169 tools/dist_train.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 2
|
||||
```
|
||||
|
||||
2. **Testing**
|
||||
|
||||
The following command demonstrates how to test DBNet on two machines with a total of 4 GPUs.
|
||||
|
||||
```bash
|
||||
# Say that you want to launch the testing job on two machines
|
||||
# On the first machine:
|
||||
NNODES=2 NODE_RANK=0 PORT=29500 MASTER_ADDR=10.140.0.169 tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 2
|
||||
# On the second machine:
|
||||
NNODES=2 NODE_RANK=1 PORT=29501 MASTER_ADDR=10.140.0.169 tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 2
|
||||
```
|
||||
|
||||
```{note}
|
||||
The speed of the network could be the bottleneck of training.
|
||||
```
|
||||
|
||||
## Training and Testing with Slurm Cluster
|
||||
|
||||
If you run MMOCR on a cluster managed with [Slurm](https://slurm.schedmd.com/), you can use the script `tools/slurm_train.sh` and `tools/slurm_test.sh`.
|
||||
|
||||
```bash
|
||||
# tools/slurm_train.sh provides scripts for submitting training tasks on clusters managed by the slurm
|
||||
GPUS=${GPUS} GPUS_PER_NODE=${GPUS_PER_NODE} CPUS_PER_TASK=${CPUS_PER_TASK} SRUN_ARGS=${SRUN_ARGS} ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [PY_ARGS]
|
||||
|
||||
# tools/slurm_test.sh provides scripts for submitting testing tasks on clusters managed by the slurm
|
||||
GPUS=${GPUS} GPUS_PER_NODE=${GPUS_PER_NODE} CPUS_PER_TASK=${CPUS_PER_TASK} SRUN_ARGS=${SRUN_ARGS} ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${WORK_DIR} [PY_ARGS]
|
||||
```
|
||||
|
||||
| ARGS | Type | Description |
|
||||
| --------------- | ---- | ----------------------------------------------------------------------------------------------------------- |
|
||||
| GPUS | int | The number of GPUs to be used by this task. Defaults to 8. |
|
||||
| GPUS_PER_NODE | int | The number of GPUs to be allocated per node. Defaults to 8. |
|
||||
| CPUS_PER_TASK | int | The number of CPUs to be allocated per task. Defaults to 5. |
|
||||
| SRUN_ARGS | str | Arguments to be parsed by srun. Available options can be found [here](https://slurm.schedmd.com/srun.html). |
|
||||
| PARTITION | str | (required)Specify the partition on cluster. |
|
||||
| JOB_NAME | str | (required)Name of the submitted job. |
|
||||
| WORK_DIR | str | (required)Specify the working directory for saving the logs and checkpoints. |
|
||||
| CHECKPOINT_FILE | str | (required,only used in slurm_test.sh)Path to the checkpoint to be tested. |
|
||||
| PY_ARGS | str | Arguments to be parsed by `tools/train.py` and `tools/test.py`. |
|
||||
|
||||
These scripts enable training and testing on slurm clusters, see the following examples.
|
||||
|
||||
1. Training
|
||||
|
||||
Here is an example of using 1 GPU to train a DBNet model on the `dev` partition.
|
||||
|
||||
```bash
|
||||
# Example: Request 1 GPU resource on dev partition for DBNet training task
|
||||
GPUS=1 GPUS_PER_NODE=1 CPUS_PER_TASK=5 tools/slurm_train.sh dev db_r50 configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py work_dir
|
||||
```
|
||||
|
||||
2. Testing
|
||||
|
||||
Similarly, the following example requests 1 GPU for testing.
|
||||
|
||||
```bash
|
||||
# Example: Request 1 GPU resource on dev partition for DBNet testing task
|
||||
GPUS=1 GPUS_PER_NODE=1 CPUS_PER_TASK=5 tools/slurm_test.sh dev db_r50 configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth work_dir
|
||||
```
|
||||
|
||||
## Advanced Tips
|
||||
|
||||
### Resume Training from a Checkpoint
|
||||
|
||||
`tools/train.py` allows users to resume training from a checkpoint by specifying the `--resume` parameter, where it will automatically resume training from the latest saved checkpoint.
|
||||
|
||||
```bash
|
||||
# Example: Resuming training from the latest checkpoint
|
||||
python tools/train.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4 --resume
|
||||
```
|
||||
|
||||
By default, the program will automatically resume training from the last successfully saved checkpoint in the last training session, i.e. `latest.pth`. However,
|
||||
|
||||
```python
|
||||
# Example: Set the path of the checkpoint you want to load in the configuration file
|
||||
load_from = 'work_dir/dbnet/models/epoch_10000.pth'
|
||||
```
|
||||
|
||||
### Mixed Precision Training
|
||||
|
||||
Mixed precision training offers significant computational speedup by performing operations in half-precision format, while storing minimal information in single-precision to retain as much information as possible in critical parts of the network. In MMOCR, the users can enable the automatic mixed precision training by simply add `--amp`.
|
||||
|
||||
```bash
|
||||
# Example: Using automatic mixed precision training
|
||||
python tools/train.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4 --amp
|
||||
```
|
||||
|
||||
The following table shows the support of each algorithm in MMOCR for automatic mixed precision training.
|
||||
|
||||
| | Whether support AMP | Description |
|
||||
| ------------- | :-----------------: | :-------------------------------------: |
|
||||
| | Text Detection | |
|
||||
| DBNet | Y | |
|
||||
| DBNetpp | Y | |
|
||||
| DRRG | N | roi_align_rotated does not support fp16 |
|
||||
| FCENet | N | BCELoss does not support fp16 |
|
||||
| Mask R-CNN | Y | |
|
||||
| PANet | Y | |
|
||||
| PSENet | Y | |
|
||||
| TextSnake | N | |
|
||||
| | Text Recognition | |
|
||||
| ABINet | Y | |
|
||||
| CRNN | Y | |
|
||||
| MASTER | Y | |
|
||||
| NRTR | Y | |
|
||||
| RobustScanner | Y | |
|
||||
| SAR | Y | |
|
||||
| SATRN | Y | |
|
||||
|
||||
### Automatic Learning Rate Scaling
|
||||
|
||||
MMOCR sets default initial learning rates for each model in the configuration file. However, these initial learning rates may not be applicable when the user uses a different `batch_size` than our preset `base_batch_size`. Therefore, we provide a tool to automatically scale the learning rate, which can be called by adding the `--auto-scale-lr`.
|
||||
|
||||
```bash
|
||||
# Example: Using automatic learning rate scaling
|
||||
python tools/train.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4 --auto-scale-lr
|
||||
```
|
||||
|
||||
### Visualize the Predictions
|
||||
|
||||
`tools/test.py` provides the visualization interface to facilitate the qualitative analysis of the OCR models.
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
(Green boxes are GTs, while red boxes are predictions)
|
||||
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
(Green font is the GT, red font is the prediction)
|
||||
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
(From left to right: original image, text detection and recognition result, text classification result, relationship)
|
||||
|
||||
</div>
|
||||
|
||||
```bash
|
||||
# Example 1: Show the visualization results per 2 seconds
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth --show --wait-time 2
|
||||
|
||||
# Example 2: For systems that do not support graphical interfaces (such as computing clusters, etc.), the visualization results can be dumped in the specified path
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth --show-dir ./vis_results
|
||||
```
|
||||
|
||||
The visualization-related parameters in `tools/test.py` are described as follows.
|
||||
|
||||
| ARGS | Type | Description |
|
||||
| ----------- | ----- | --------------------------------------------- |
|
||||
| --show | bool | Whether to show the visualization results. |
|
||||
| --show-dir | str | Path to save the visualization results. |
|
||||
| --wait-time | float | Interval of visualization (s), defaults to 2. |
|
||||
|
|
|
@ -1 +1,309 @@
|
|||
# 训练与测试
|
||||
|
||||
为了适配多样化的用户需求,MMOCR 实现了多种不同操作系统及设备上的模型训练及测试。无论是使用本地机器进行单机单卡训练测试,还是在部署了 slurm 系统的大规模集群上进行训练测试,MMOCR 都提供了便捷的解决方案。
|
||||
|
||||
## 单卡机器训练及测试
|
||||
|
||||
### 训练
|
||||
|
||||
`tools/train.py` 实现了基础的训练服务。MMOCR 推荐用户使用 GPU 进行模型训练和测试,但是,用户也可以通过指定 `CUDA_VISIBLE_DEVICES=-1` 来使用 CPU 设备进行模型训练及测试。例如,以下命令演示了如何使用 CPU 或单卡 GPU 来训练 DBNet 文本检测器。
|
||||
|
||||
```bash
|
||||
# 通过调用 tools/train.py 来训练指定的 MMOCR 模型
|
||||
CUDA_VISIBLE_DEVICES= python tools/train.py ${CONFIG_FILE} [PY_ARGS]
|
||||
|
||||
# 训练
|
||||
# 示例 1:使用 CPU 训练 DBNet
|
||||
CUDA_VISIBLE_DEVICES=-1 python tools/train.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py
|
||||
|
||||
# 示例 2:指定使用 gpu:0 训练 DBNet,指定工作目录为 dbnet/,并打开混合精度(amp)训练
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/train.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py --work-dir dbnet/ --amp
|
||||
```
|
||||
|
||||
```{note}
|
||||
此外,如需使用指定编号的 GPU 进行训练或测试,例如使用3号 GPU,则可以通过设定 CUDA_VISIBLE_DEVICES=3 来实现。
|
||||
```
|
||||
|
||||
下表列出了 `train.py` 支持的所有参数。其中,不带 `--` 前缀的参数为必须的位置参数,带 `--` 前缀的参数为可选参数。
|
||||
|
||||
| 参数 | 类型 | 说明 |
|
||||
| --------------- | ---- | -------------------------------------------------------------- |
|
||||
| config | str | (必须)配置文件路径。 |
|
||||
| --work-dir | str | 指定工作目录,用于存放训练日志以及模型 checkpoints。 |
|
||||
| --resume | bool | 是否从断点处恢复训练。 |
|
||||
| --amp | bool | 是否使用混合精度。 |
|
||||
| --auto-scale-lr | bool | 是否使用学习率自动缩放。 |
|
||||
| --cfg-options | str | 用于覆写配置文件中的指定参数。[示例](#添加示例) |
|
||||
| --launcher | str | 启动器选项,可选项目为 \['none', 'pytorch', 'slurm', 'mpi'\]。 |
|
||||
| --local_rank | int | 本地机器编号,用于多机多卡分布式训练,默认为 0。 |
|
||||
|
||||
### 测试
|
||||
|
||||
`tools/test.py` 提供了基础的测试服务,其使用原理和训练脚本类似。例如,以下命令演示了 CPU 或 GPU 单卡测试 DBNet 模型。
|
||||
|
||||
```bash
|
||||
# 通过调用 tools/test.py 来测试指定的 MMOCR 模型
|
||||
CUDA_VISIBLE_DEVICES= python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [PY_ARGS]
|
||||
|
||||
# 测试
|
||||
# 示例 1:使用 CPU 测试 DBNet
|
||||
CUDA_VISIBLE_DEVICES=-1 python tools/test.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth
|
||||
# 示例 2:使用 gpu:0 测试 DBNet
|
||||
CUDA_VISIBLE_DEVICES=0 python tools/test.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth
|
||||
```
|
||||
|
||||
下表列出了 `test.py` 支持的所有参数。其中,不带 `--` 前缀的参数为必须的位置参数,带 `--` 前缀的参数为可选参数。
|
||||
|
||||
| 参数 | 类型 | 说明 |
|
||||
| ------------- | ----- | -------------------------------------------------------------- |
|
||||
| config | str | (必须)配置文件路径。 |
|
||||
| checkpoint | str | (必须)待测试模型路径。 |
|
||||
| --work-dir | str | 工作目录,用于存放训练日志以及模型 checkpoints。 |
|
||||
| --save-preds | bool | 是否将预测结果写入 pkl 文件并保存。 |
|
||||
| --show | bool | 是否可视化预测结果。 |
|
||||
| --show-dir | str | 将可视化的预测结果保存至指定路径。 |
|
||||
| --wait-time | float | 可视化间隔时间(秒),默认为 2 秒。 |
|
||||
| --cfg-options | str | 用于覆写配置文件中的指定参数。[示例](#添加示例) |
|
||||
| --launcher | str | 启动器选项,可选项目为 \['none', 'pytorch', 'slurm', 'mpi'\]。 |
|
||||
| --local_rank | int | 本地机器编号,用于多机多卡分布式训练,默认为 0。 |
|
||||
|
||||
## 多卡机器训练及测试
|
||||
|
||||
对于大规模模型,采用多 GPU 训练和测试可以极大地提升操作的效率。为此,MMOCR 提供了基于 [MMDistributedDataParallel](mmengine.model.wrappers.MMDistributedDataParallel) 实现的分布式脚本 `tools/dist_train.sh` 和 `tools/dist_test.sh`。
|
||||
|
||||
```bash
|
||||
# 训练
|
||||
NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [PY_ARGS]
|
||||
# 测试
|
||||
NNODES=${NNODES} NODE_RANK=${NODE_RANK} PORT=${MASTER_PORT} MASTER_ADDR=${MASTER_ADDR} ./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [PY_ARGS]
|
||||
```
|
||||
|
||||
下表列出了 `dist_*.sh` 支持的参数:
|
||||
|
||||
| 参数 | 类型 | 说明 |
|
||||
| --------------- | ---- | ---------------------------------------------------------------------------------- |
|
||||
| NNODES | int | 总共使用的机器节点个数,默认为 1。 |
|
||||
| NODE_RANK | int | 节点编号,默认为 0。 |
|
||||
| PORT | int | 在 RANK 0 机器上使用的 MASTER_PORT 端口号,取值范围是 0 至 65535,默认值为 29500。 |
|
||||
| MASTER_ADDR | str | RANK 0 机器的 IP 地址,默认值为 127.0.0.1。 |
|
||||
| CONFIG_FILE | str | (必须)指定配置文件的地址。 |
|
||||
| CHECKPOINT_FILE | str | (必须,仅在 dist_test.sh 中适用)指定模型权重的地址。 |
|
||||
| GPU_NUM | int | (必须)指定 GPU 的数量。 |
|
||||
| \[PY_ARGS\] | str | 该部分一切的参数都会被直接传入 tools/train.py 或 tools/test.py 中。 |
|
||||
|
||||
这两个脚本可以实现**单机多卡**或**多机多卡**的训练和测试,下面演示了它们在不同场景下的用法。
|
||||
|
||||
### 单机多卡
|
||||
|
||||
以下命令演示了如何在搭载多块 GPU 的**单台机器**上使用指定数目的 GPU 进行训练及测试:
|
||||
|
||||
1. **训练**
|
||||
|
||||
使用单台机器上的 4 块 GPU 训练 DBNet。
|
||||
|
||||
```bash
|
||||
# 单机 4 卡训练 DBNet
|
||||
tools/dist_train.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4
|
||||
```
|
||||
|
||||
2. **测试**
|
||||
|
||||
使用单台机器上的 4 块 GPU 测试 DBNet。
|
||||
|
||||
```bash
|
||||
# 单机 4 卡测试 DBNet
|
||||
tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 4
|
||||
```
|
||||
|
||||
### 单机多任务训练及测试
|
||||
|
||||
对于搭载多块 GPU 的单台服务器而言,用户可以通过指定 GPU 的形式来同时执行不同的训练任务。例如,以下命令演示了如何在一台 8 卡 GPU 服务器上分别使用 `[0, 1, 2, 3]` 卡测试 DBNet 及 `[4, 5, 6, 7]` 卡训练 CRNN:
|
||||
|
||||
```bash
|
||||
# 指定使用 gpu:0,1,2,3 测试 DBNet,并分配端口号 29500
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 4
|
||||
# 指定使用 gpu:4,5,6,7 训练 CRNN,并分配端口号 29501
|
||||
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh configs/textrecog/crnn/crnn_academic_dataset.py 4
|
||||
```
|
||||
|
||||
```{note}
|
||||
`dist_train.sh` 默认将 `MASTER_PORT` 设置为 `29500`,当单台机器上有其它进程已占用该端口时,程序则会出现运行时错误 `RuntimeError: Address already in use`。此时,用户需要将 `MASTER_PORT` 设置为 `(0~65535)` 范围内的其它空闲端口号。
|
||||
```
|
||||
|
||||
### 多机多卡训练及测试
|
||||
|
||||
MMOCR 基于[torch.distributed](https://pytorch.org/docs/stable/distributed.html#launch-utility) 提供了相同局域网下的多台机器间的多卡分布式训练。
|
||||
|
||||
1. **训练**
|
||||
|
||||
以下命令演示了如何在两台机器上分别使用 2 张 GPU 合计 4 卡训练 DBNet:
|
||||
|
||||
```bash
|
||||
# 示例:在两台机器上分别使用 2 张 GPU 合计 4 卡训练 DBNet
|
||||
# 在 “机器1” 上运行以下命令
|
||||
NNODES=2 NODE_RANK=0 PORT=29501 MASTER_ADDR=10.140.0.169 tools/dist_train.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 2
|
||||
# 在 “机器2” 上运行以下命令
|
||||
NNODES=2 NODE_RANK=1 PORT=29501 MASTER_ADDR=10.140.0.169 tools/dist_train.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 2
|
||||
```
|
||||
|
||||
2. **测试**
|
||||
|
||||
以下命令演示了如何在两台机器上分别使用 2 张 GPU 合计 4 卡测试:
|
||||
|
||||
```bash
|
||||
# 示例:在两台机器上分别使用 2 张 GPU 合计 4 卡测试
|
||||
# 在 “机器1” 上运行以下命令
|
||||
NNODES=2 NODE_RANK=0 PORT=29500 MASTER_ADDR=10.140.0.169 tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 2
|
||||
# 在 “机器2” 上运行以下命令
|
||||
NNODES=2 NODE_RANK=1 PORT=29501 MASTER_ADDR=10.140.0.169 tools/dist_test.sh configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth 2
|
||||
```
|
||||
|
||||
```{note}
|
||||
需要注意的是,采用多机多卡训练时,机器间的网络传输速度可能成为训练速度的瓶颈。
|
||||
```
|
||||
|
||||
## 集群训练及测试
|
||||
|
||||
针对 [Slurm](https://slurm.schedmd.com/) 调度系统管理的计算集群,MMOCR 提供了对应的训练和测试任务提交脚本 `tools/slurm_train.sh` 及 `tools/slurm_test.sh`。
|
||||
|
||||
```bash
|
||||
# tools/slurm_train.sh 提供基于 slurm 调度系统管理的计算集群上提交训练任务的脚本
|
||||
GPUS=${GPUS} GPUS_PER_NODE=${GPUS_PER_NODE} CPUS_PER_TASK=${CPUS_PER_TASK} SRUN_ARGS=${SRUN_ARGS} ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [PY_ARGS]
|
||||
|
||||
# tools/slurm_test.sh 提供基于 slurm 调度系统管理的计算集群上提交测试任务的脚本
|
||||
GPUS=${GPUS} GPUS_PER_NODE=${GPUS_PER_NODE} CPUS_PER_TASK=${CPUS_PER_TASK} SRUN_ARGS=${SRUN_ARGS} ./tools/slurm_test.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${CHECKPOINT_FILE} ${WORK_DIR} [PY_ARGS]
|
||||
```
|
||||
|
||||
| 参数 | 类型 | 说明 |
|
||||
| --------------- | ---- | ------------------------------------------------------------------------- |
|
||||
| GPUS | int | 使用的 GPU 数目,默认为8。 |
|
||||
| GPUS_PER_NODE | int | 每台节点机器上搭载的 GPU 数目,默认为8。 |
|
||||
| CPUS_PER_TASK | int | 任务使用的 CPU 个数,默认为5。 |
|
||||
| SRUN_ARGS | str | 其他 srun 支持的参数。详见[这里](https://slurm.schedmd.com/srun.html) |
|
||||
| PARTITION | str | (必须)指定使用的集群分区。 |
|
||||
| JOB_NAME | str | (必须)提交任务的名称。 |
|
||||
| WORK_DIR | str | (必须)任务的工作目录,训练日志以及模型的 checkpoints 将被保存至该目录。 |
|
||||
| CHECKPOINT_FILE | str | (必须,仅在 slurm_test.sh 中适用)指向模型权重的地址。 |
|
||||
| \[PY_ARGS\] | str | tools/train.py 以及 tools/test.py 支持的参数。 |
|
||||
|
||||
这两个脚本可以实现 slurm 集群上的训练和测试,下面演示了它们在不同场景下的用法。
|
||||
|
||||
1. 训练
|
||||
|
||||
以下示例为在 slurm 集群 dev 分区申请 1 块 GPU 进行 DBNet 训练。
|
||||
|
||||
```bash
|
||||
# 示例:在 slurm 集群 dev 分区申请 1块 GPU 资源进行 DBNet 训练任务
|
||||
GPUS=1 GPUS_PER_NODE=1 CPUS_PER_TASK=5 tools/slurm_train.sh dev db_r50 configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py work_dir
|
||||
```
|
||||
|
||||
2. 测试
|
||||
|
||||
同理, 则提供了测试任务提交脚本。以下示例为在 slurm 集群 dev 分区申请 1 块 GPU 资源进行 DBNet 测试。
|
||||
|
||||
```bash
|
||||
# 示例:在 slurm 集群 dev 分区申请 1块 GPU 资源进行 DBNet 测试任务
|
||||
GPUS=1 GPUS_PER_NODE=1 CPUS_PER_TASK=5 tools/slurm_test.sh dev db_r50 configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth work_dir
|
||||
```
|
||||
|
||||
## 进阶技巧
|
||||
|
||||
### 从断点恢复训练
|
||||
|
||||
`tools/train.py` 提供了从断点恢复训练的功能,用户仅需在命令中指定 `--resume` 参数,即可自动从断点恢复训练。
|
||||
|
||||
```bash
|
||||
# 示例:从断点恢复训练
|
||||
python tools/train.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4 --resume
|
||||
```
|
||||
|
||||
默认地,程序将自动从上次训练过程中最后成功保存的断点,即 `latest.pth` 处开始继续训练。如果用户希望指定从特定的断点处开始恢复训练,则可以按如下格式在模型的配置文件中设定该断点的路径。
|
||||
|
||||
```python
|
||||
# 示例:在配置文件中设置想要加载的断点路径
|
||||
load_from = 'work_dir/dbnet/models/epoch_10000.pth'
|
||||
```
|
||||
|
||||
### 混合精度训练
|
||||
|
||||
混合精度训练可以在缩减内存占用的同时提升训练速度,为此,MMOCR 提供了一键式的混合精度训练方案,仅需在训练时添加 `--amp` 参数即可。
|
||||
|
||||
```bash
|
||||
# 示例:使用自动混合精度训练
|
||||
python tools/train.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4 --amp
|
||||
```
|
||||
|
||||
下表列出了 MMOCR 中各算法对自动混合精度训练的支持情况:
|
||||
|
||||
| | 是否支持混合精度训练 | 备注 |
|
||||
| ------------- | :------------------: | :---------------------------: |
|
||||
| | 文本检测 | |
|
||||
| DBNet | 是 | |
|
||||
| DBNetpp | 是 | |
|
||||
| DRRG | 否 | roi_align_rotated 不支持 fp16 |
|
||||
| FCENet | 否 | BCELoss 不支持 fp16 |
|
||||
| Mask R-CNN | 是 | |
|
||||
| PANet | 是 | |
|
||||
| PSENet | 是 | |
|
||||
| TextSnake | 否 | |
|
||||
| | 文本识别 | |
|
||||
| ABINet | 是 | |
|
||||
| CRNN | 是 | |
|
||||
| MASTER | 是 | |
|
||||
| NRTR | 是 | |
|
||||
| RobustScanner | 是 | |
|
||||
| SAR | 是 | |
|
||||
| SATRN | 是 | |
|
||||
|
||||
### 自动学习率缩放
|
||||
|
||||
MMOCR 在配置文件中为每一个模型设置了默认的初始学习率,然而,当用户使用的 `batch_size` 不同于我们预设的 `base_batch_size` 时,这些初始学习率可能不再完全适用。因此,我们提供了自动学习率缩放工具。当使用不同于 MMOCR 预设的 `base_batch_size` 进行训练时,用户仅需添加 `--auto-scale-lr` 参数即可自动依据新的 `batch_size` 将学习率缩放至对应尺度。
|
||||
|
||||
```bash
|
||||
# 示例:使用自动学习率缩放
|
||||
python tools/train.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py 4 --auto-scale-lr
|
||||
```
|
||||
|
||||
### 可视化模型测试结果
|
||||
|
||||
`tools/test.py` 提供了可视化接口,以方便用户对模型进行定性分析。
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
(绿色框为真实标注,红色框为预测结果)
|
||||
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
(绿色字体为真实标注,红色字体为预测结果)
|
||||
|
||||
</div>
|
||||
|
||||
<div align="center">
|
||||
|
||||

|
||||
|
||||
(从左至右分别为:原图,文本检测和识别结果,文本分类结果,关系图)
|
||||
|
||||
</div>
|
||||
|
||||
```bash
|
||||
# 示例1:每间隔 2 秒绘制出
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth --show --wait-time 2
|
||||
|
||||
# 示例2:对于不支持图形化界面的系统(如计算集群等),可以将可视化结果存入指定路径
|
||||
python tools/test.py configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py dbnet_r50.pth --show-dir ./vis_results
|
||||
```
|
||||
|
||||
`tools/test.py` 中可视化相关参数说明:
|
||||
|
||||
| 参数 | 类型 | 说明 |
|
||||
| ----------- | ----- | -------------------------------- |
|
||||
| --show | bool | 是否绘制可视化结果。 |
|
||||
| --show-dir | str | 可视化图片存储路径。 |
|
||||
| --wait-time | float | 可视化间隔时间(秒),默认为 2。 |
|
||||
|
|
Loading…
Reference in New Issue