fix #45: remove useless (#46)

pull/2/head
Hongbin Sun 2021-04-06 15:28:07 +08:00 committed by GitHub
parent fbb5c8cda1
commit 8d527bdeca
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 8 additions and 576 deletions

View File

@ -4,12 +4,12 @@ from .icdar_dataset import IcdarDataset
from .kie_dataset import KIEDataset
from .ocr_dataset import OCRDataset
from .ocr_seg_dataset import OCRSegDataset
from .pipelines import CustomFormatBundle, DBNetTargets, DRRGTargets
from .pipelines import CustomFormatBundle, DBNetTargets
from .text_det_dataset import TextDetDataset
from .utils import * # noqa: F401,F403
__all__ = [
'DATASETS', 'IcdarDataset', 'build_dataloader', 'build_dataset',
'BaseDataset', 'OCRDataset', 'TextDetDataset', 'CustomFormatBundle',
'DBNetTargets', 'OCRSegDataset', 'DRRGTargets', 'KIEDataset'
'DBNetTargets', 'OCRSegDataset', 'KIEDataset'
]

View File

@ -8,8 +8,7 @@ from .ocr_transforms import (FancyPCA, NormalizeOCR, OnlineCropOCR,
OpencvToPil, PilToOpencv, RandomPaddingOCR,
RandomRotateImageBox, ResizeOCR, ToTensorOCR)
from .test_time_aug import MultiRotateAugOCR
from .textdet_targets import (DBNetTargets, DRRGTargets, PANetTargets,
TextSnakeTargets)
from .textdet_targets import DBNetTargets, PANetTargets, TextSnakeTargets
from .transforms import (ColorJitter, RandomCropInstances,
RandomCropPolyInstances, RandomRotatePolyInstances,
RandomRotateTextDet, ScaleAspectJitter,
@ -20,8 +19,8 @@ __all__ = [
'ToTensorOCR', 'CustomFormatBundle', 'DBNetTargets', 'PANetTargets',
'ColorJitter', 'RandomCropInstances', 'RandomRotateTextDet',
'ScaleAspectJitter', 'MultiRotateAugOCR', 'OCRSegTargets', 'FancyPCA',
'DRRGTargets', 'RandomCropPolyInstances', 'RandomRotatePolyInstances',
'RandomPaddingOCR', 'ImgAug', 'EastRandomCrop', 'RandomRotateImageBox',
'OpencvToPil', 'PilToOpencv', 'KIEFormatBundle', 'SquareResizePad',
'TextSnakeTargets', 'sort_vertex'
'RandomCropPolyInstances', 'RandomRotatePolyInstances', 'RandomPaddingOCR',
'ImgAug', 'EastRandomCrop', 'RandomRotateImageBox', 'OpencvToPil',
'PilToOpencv', 'KIEFormatBundle', 'SquareResizePad', 'TextSnakeTargets',
'sort_vertex'
]

View File

@ -1,11 +1,10 @@
from .base_textdet_targets import BaseTextDetTargets
from .dbnet_targets import DBNetTargets
from .drrg_targets import DRRGTargets
from .panet_targets import PANetTargets
from .psenet_targets import PSENetTargets
from .textsnake_targets import TextSnakeTargets
__all__ = [
'BaseTextDetTargets', 'PANetTargets', 'PSENetTargets', 'DBNetTargets',
'TextSnakeTargets', 'DRRGTargets'
'TextSnakeTargets'
]

View File

@ -1,566 +0,0 @@
import cv2
import numpy as np
from numpy.linalg import norm
import mmocr.utils.check_argument as check_argument
from mmdet.core import BitmapMasks
from mmdet.datasets.builder import PIPELINES
# from mmocr.models.textdet import la_nms
from .textsnake_targets import TextSnakeTargets
@PIPELINES.register_module()
class DRRGTargets(TextSnakeTargets):
"""Generate the ground truth targets of DRRG: Deep Relational Reasoning
Graph Network for Arbitrary Shape Text Detection.
[https://arxiv.org/abs/2003.07493]. This was partially adapted from
https://github.com/GXYM/DRRG.
Args:
orientation_thr (float): The threshold for distinguishing between
head edge and tail edge among the horizontal and vertical edges
of a quadrangle.
resample_step (float): The step size for resampling the text center
line (TCL). Better not exceed half of the minimum width
of the text component.
min_comp_num (int): The minimum number of text components, which
should be k_hop1 + 1 on graph.
max_comp_num (int): The maximum number of text components.
min_width (float): The minimum width of text components.
max_width (float): The maximum width of text components.
center_region_shrink_ratio (float): The shrink ratio of text center
region.
comp_shrink_ratio (float): The shrink ratio of text components.
text_comp_ratio (float): The reciprocal of aspect ratio of text
components.
min_rand_half_height(float): The minimum half-height of random text
components.
max_rand_half_height (float): The maximum half-height of random
text components.
jitter_level (float): The jitter level of text components geometric
features.
"""
def __init__(self,
orientation_thr=2.0,
resample_step=8.0,
min_comp_num=9,
max_comp_num=600,
min_width=8.0,
max_width=24.0,
center_region_shrink_ratio=0.3,
comp_shrink_ratio=1.0,
text_comp_ratio=0.65,
text_comp_nms_thr=0.25,
min_rand_half_height=6.0,
max_rand_half_height=24.0,
jitter_level=0.2):
super().__init__()
self.orientation_thr = orientation_thr
self.resample_step = resample_step
self.max_comp_num = max_comp_num
self.min_comp_num = min_comp_num
self.min_width = min_width
self.max_width = max_width
self.center_region_shrink_ratio = center_region_shrink_ratio
self.comp_shrink_ratio = comp_shrink_ratio
self.text_comp_ratio = text_comp_ratio
self.text_comp_nms_thr = text_comp_nms_thr
self.min_rand_half_height = min_rand_half_height
self.max_rand_half_height = max_rand_half_height
self.jitter_level = jitter_level
def dist_point2line(self, pnt, line):
assert isinstance(line, tuple)
pnt1, pnt2 = line
d = abs(np.cross(pnt2 - pnt1, pnt - pnt1)) / (norm(pnt2 - pnt1) + 1e-8)
return d
def draw_center_region_maps(self, top_line, bot_line, center_line,
center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map,
region_shrink_ratio):
"""Draw attributes on text center region.
Args:
top_line (ndarray): The points composing top curved sideline of
text polygon.
bot_line (ndarray): The points composing bottom curved sideline
of text polygon.
center_line (ndarray): The points composing the center line of text
instance.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The map on which the distance from point
to top sideline will be drawn for each pixel in text center
region.
bot_height_map (ndarray): The map on which the distance from point
to bottom sideline will be drawn for each pixel in text center
region.
sin_map (ndarray): The map of vector_sin(top_point -bot_point)
that will be drawn on text center region.
cos_map (ndarray): The map of vector_cos(top_point -bot_point)
will be drawn on text center region.
region_shrink_ratio (float): The shrink ratio of text center.
"""
assert top_line.shape == bot_line.shape == center_line.shape
assert (center_region_mask.shape == top_height_map.shape ==
bot_height_map.shape == sin_map.shape == cos_map.shape)
assert isinstance(region_shrink_ratio, float)
h, w = center_region_mask.shape
for i in range(0, len(center_line) - 1):
top_mid_point = (top_line[i] + top_line[i + 1]) / 2
bot_mid_point = (bot_line[i] + bot_line[i + 1]) / 2
sin_theta = self.vector_sin(top_mid_point - bot_mid_point)
cos_theta = self.vector_cos(top_mid_point - bot_mid_point)
pnt_tl = center_line[i] + (top_line[i] -
center_line[i]) * region_shrink_ratio
pnt_tr = center_line[i + 1] + (
top_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
pnt_br = center_line[i + 1] + (
bot_line[i + 1] - center_line[i + 1]) * region_shrink_ratio
pnt_bl = center_line[i] + (bot_line[i] -
center_line[i]) * region_shrink_ratio
current_center_box = np.vstack([pnt_tl, pnt_tr, pnt_br,
pnt_bl]).astype(np.int32)
cv2.fillPoly(center_region_mask, [current_center_box], color=1)
cv2.fillPoly(sin_map, [current_center_box], color=sin_theta)
cv2.fillPoly(cos_map, [current_center_box], color=cos_theta)
# x,y order
current_center_box[:, 0] = np.clip(current_center_box[:, 0], 0,
w - 1)
current_center_box[:, 1] = np.clip(current_center_box[:, 1], 0,
h - 1)
min_coord = np.min(current_center_box, axis=0).astype(np.int32)
max_coord = np.max(current_center_box, axis=0).astype(np.int32)
current_center_box = current_center_box - min_coord
sz = (max_coord - min_coord + 1)
center_box_mask = np.zeros((sz[1], sz[0]), dtype=np.uint8)
cv2.fillPoly(center_box_mask, [current_center_box], color=1)
inx = np.argwhere(center_box_mask > 0)
inx = inx + (min_coord[1], min_coord[0]) # y, x order
inx_xy = np.fliplr(inx)
top_height_map[(inx[:, 0], inx[:, 1])] = self.dist_point2line(
inx_xy, (top_line[i], top_line[i + 1]))
bot_height_map[(inx[:, 0], inx[:, 1])] = self.dist_point2line(
inx_xy, (bot_line[i], bot_line[i + 1]))
def generate_center_mask_attrib_maps(self, img_size, text_polys):
"""Generate text center region mask and geometry attribute maps.
Args:
img_size (tuple): The image size of (height, width).
text_polys (list[list[ndarray]]): The list of text polygons.
Returns:
center_lines (list): The list of text center lines.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The distance map from each pixel in text
center region to top sideline.
bot_height_map (ndarray): The distance map from each pixel in text
center region to bottom sideline.
sin_map (ndarray): The sin(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
cos_map (ndarray): The cos(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
"""
assert isinstance(img_size, tuple)
assert check_argument.is_2dlist(text_polys)
h, w = img_size
center_lines = []
center_region_mask = np.zeros((h, w), np.uint8)
top_height_map = np.zeros((h, w), dtype=np.float32)
bot_height_map = np.zeros((h, w), dtype=np.float32)
sin_map = np.zeros((h, w), dtype=np.float32)
cos_map = np.zeros((h, w), dtype=np.float32)
for poly in text_polys:
assert len(poly) == 1
polygon_points = poly[0].reshape(-1, 2)
_, _, top_line, bot_line = self.reorder_poly_edge(polygon_points)
resampled_top_line, resampled_bot_line = self.resample_sidelines(
top_line, bot_line, self.resample_step)
resampled_bot_line = resampled_bot_line[::-1]
center_line = (resampled_top_line + resampled_bot_line) / 2
line_head_shrink_len = np.clip(
(norm(top_line[0] - bot_line[0]) * self.text_comp_ratio),
self.min_width, self.max_width) / 2
line_tail_shrink_len = np.clip(
(norm(top_line[-1] - bot_line[-1]) * self.text_comp_ratio),
self.min_width, self.max_width) / 2
head_shrink_num = int(line_head_shrink_len // self.resample_step)
tail_shrink_num = int(line_tail_shrink_len // self.resample_step)
if len(center_line) > head_shrink_num + tail_shrink_num + 2:
center_line = center_line[head_shrink_num:len(center_line) -
tail_shrink_num]
resampled_top_line = resampled_top_line[
head_shrink_num:len(resampled_top_line) - tail_shrink_num]
resampled_bot_line = resampled_bot_line[
head_shrink_num:len(resampled_bot_line) - tail_shrink_num]
center_lines.append(center_line.astype(np.int32))
self.draw_center_region_maps(resampled_top_line,
resampled_bot_line, center_line,
center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map,
self.center_region_shrink_ratio)
return (center_lines, center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map)
def generate_comp_attribs_from_maps(self, center_lines, center_region_mask,
top_height_map, bot_height_map,
sin_map, cos_map, comp_shrink_ratio):
"""Generate attributes of text components in accordance with text
center lines and geometry attribute maps.
Args:
center_lines (list[ndarray]): The list of text center lines.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The distance map from each pixel in text
center region to top sideline.
bot_height_map (ndarray): The distance map from each pixel in text
center region to bottom sideline.
sin_map (ndarray): The sin(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
cos_map (ndarray): The cos(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
comp_shrink_ratio (float): The text component shrink ratio.
Returns:
comp_attribs (ndarray): All text components attributes(x, y, h, w,
cos, sin, comp_labels). The comp_labels of two text components
from the same text instance are equal.
"""
assert isinstance(center_lines, list)
assert (center_region_mask.shape == top_height_map.shape ==
bot_height_map.shape == sin_map.shape == cos_map.shape)
assert isinstance(comp_shrink_ratio, float)
center_lines_mask = np.zeros_like(center_region_mask)
cv2.polylines(center_lines_mask, center_lines, 0, (1, ), 1)
center_lines_mask = center_lines_mask * center_region_mask
comp_centers = np.argwhere(center_lines_mask > 0)
y = comp_centers[:, 0]
x = comp_centers[:, 1]
top_height = top_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
bot_height = bot_height_map[y, x].reshape((-1, 1)) * comp_shrink_ratio
sin = sin_map[y, x].reshape((-1, 1))
cos = cos_map[y, x].reshape((-1, 1))
top_mid_x_offset = top_height * cos
top_mid_y_offset = top_height * sin
bot_mid_x_offset = bot_height * cos
bot_mid_y_offset = bot_height * sin
top_mid_pnt = comp_centers + np.hstack(
[top_mid_y_offset, top_mid_x_offset])
bot_mid_pnt = comp_centers - np.hstack(
[bot_mid_y_offset, bot_mid_x_offset])
width = (top_height + bot_height) * self.text_comp_ratio
width = np.clip(width, self.min_width, self.max_width)
top_left = (top_mid_pnt -
np.hstack([width * cos, -width * sin]))[:, ::-1]
top_right = (top_mid_pnt +
np.hstack([width * cos, -width * sin]))[:, ::-1]
bot_right = (bot_mid_pnt +
np.hstack([width * cos, -width * sin]))[:, ::-1]
bot_left = (bot_mid_pnt -
np.hstack([width * cos, -width * sin]))[:, ::-1]
text_comps = np.hstack([top_left, top_right, bot_right, bot_left])
score = center_lines_mask[y, x].reshape((-1, 1))
text_comps = np.hstack([text_comps, score]).astype(np.float32)
# text_comps = la_nms(text_comps, self.text_comp_nms_thr)
if text_comps.shape[0] < 1:
return None
img_h, img_w = center_region_mask.shape
text_comps[:, 0:8:2] = np.clip(text_comps[:, 0:8:2], 0, img_w - 1)
text_comps[:, 1:8:2] = np.clip(text_comps[:, 1:8:2], 0, img_h - 1)
comp_centers = np.mean(
text_comps[:, 0:8].reshape((-1, 4, 2)), axis=1).astype(np.int32)
x = comp_centers[:, 0]
y = comp_centers[:, 1]
height = (top_height_map[y, x] + bot_height_map[y, x]).reshape((-1, 1))
width = np.clip(height * self.text_comp_ratio, self.min_width,
self.max_width)
cos = cos_map[y, x].reshape((-1, 1))
sin = sin_map[y, x].reshape((-1, 1))
_, comp_label_mask = cv2.connectedComponents(
center_region_mask.astype(np.uint8), connectivity=8)
comp_labels = comp_label_mask[y, x].reshape((-1, 1))
x = x.reshape((-1, 1))
y = y.reshape((-1, 1))
comp_attribs = np.hstack([x, y, height, width, cos, sin, comp_labels])
return comp_attribs
def generate_rand_comp_attribs(self, comp_num, center_sample_mask):
"""Generate random text components and their attributes to ensure the
the number text components in a text image is larger than k_hop1, which
is the number of one hop neighbors in KNN graph.
Args:
comp_num (int): The number of random text components.
center_sample_mask (ndarray): The text component centers sampling
region mask.
Returns:
rand_comp_attribs (ndarray): The random text components
attributes(x, y, h, w, cos, sin, belong_instance_label=0).
"""
assert isinstance(comp_num, int)
assert comp_num > 0
assert center_sample_mask.ndim == 2
h, w = center_sample_mask.shape
max_rand_half_height = self.max_rand_half_height
min_rand_half_height = self.min_rand_half_height
max_rand_height = max_rand_half_height * 2
max_rand_width = np.clip(max_rand_height * self.text_comp_ratio,
self.min_width, self.max_width)
margin = int(
np.sqrt((max_rand_height / 2)**2 + (max_rand_width / 2)**2)) + 1
if 2 * margin + 1 > min(h, w):
assert min(h, w) > (np.sqrt(2) * (self.min_width + 1))
max_rand_half_height = max(min(h, w) / 4, self.min_width / 2 + 1)
min_rand_half_height = max(max_rand_half_height / 4,
self.min_width / 2)
max_rand_height = max_rand_half_height * 2
max_rand_width = np.clip(max_rand_height * self.text_comp_ratio,
self.min_width, self.max_width)
margin = int(
np.sqrt((max_rand_height / 2)**2 +
(max_rand_width / 2)**2)) + 1
inner_center_sample_mask = np.zeros_like(center_sample_mask)
inner_center_sample_mask[margin:h-margin, margin:w-margin] = \
center_sample_mask[margin:h - margin, margin:w - margin]
kernel_size = int(min(max(max_rand_half_height, 7), 17))
inner_center_sample_mask = cv2.erode(
inner_center_sample_mask,
np.ones((kernel_size, kernel_size), np.uint8))
center_candidates = np.argwhere(inner_center_sample_mask > 0)
center_candidate_num = len(center_candidates)
sample_inx = np.random.choice(center_candidate_num, comp_num)
rand_centers = center_candidates[sample_inx]
rand_top_height = np.random.randint(
min_rand_half_height,
max_rand_half_height,
size=(len(rand_centers), 1))
rand_bot_height = np.random.randint(
min_rand_half_height,
max_rand_half_height,
size=(len(rand_centers), 1))
rand_cos = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
rand_sin = 2 * np.random.random(size=(len(rand_centers), 1)) - 1
scale = np.sqrt(1.0 / (rand_cos**2 + rand_sin**2 + 1e-8))
rand_cos = rand_cos * scale
rand_sin = rand_sin * scale
height = (rand_top_height + rand_bot_height)
width = np.clip(height * self.text_comp_ratio, self.min_width,
self.max_width)
rand_comp_attribs = np.hstack([
rand_centers[:, ::-1], height, width, rand_cos, rand_sin,
np.zeros_like(rand_sin)
])
return rand_comp_attribs
def jitter_comp_attribs(self, comp_attribs, jitter_level):
"""Jitter text components attributes.
Args:
comp_attribs (ndarray): The text components attributes.
jitter_level (float): The jitter level of text components
attributes.
Returns:
jittered_comp_attribs (ndarray): The jittered text components
attributes(x, y, h, w, cos, sin, belong_instance_label).
"""
assert comp_attribs.shape[1] == 7
assert comp_attribs.shape[0] > 0
assert isinstance(jitter_level, float)
x = comp_attribs[:, 0].reshape((-1, 1))
y = comp_attribs[:, 1].reshape((-1, 1))
h = comp_attribs[:, 2].reshape((-1, 1))
w = comp_attribs[:, 3].reshape((-1, 1))
cos = comp_attribs[:, 4].reshape((-1, 1))
sin = comp_attribs[:, 5].reshape((-1, 1))
belong_label = comp_attribs[:, 6].reshape((-1, 1))
# max jitter offset of (x, y) should be
# ((h * abs(cos) + w * abs(sin)) / 2,
# (h * abs(sin) + w * abs(cos)) / 2)
x += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * (h * np.abs(cos) + w * np.abs(sin)) * jitter_level
y += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * (h * np.abs(sin) + w * np.abs(cos)) * jitter_level
# max jitter offset of (h, w) should be (h, w)
h += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * h * jitter_level
w += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * w * jitter_level
# max jitter offset of (cos, sin) should be (1, 1)
cos += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * 2 * jitter_level
sin += (np.random.random(size=(len(comp_attribs), 1)) -
0.5) * 2 * jitter_level
scale = np.sqrt(1.0 / (cos**2 + sin**2 + 1e-8))
cos = cos * scale
sin = sin * scale
jittered_comp_attribs = np.hstack([x, y, h, w, cos, sin, belong_label])
return jittered_comp_attribs
def generate_comp_attribs(self, center_lines, text_mask,
center_region_mask, top_height_map,
bot_height_map, sin_map, cos_map):
"""Generate text components attributes.
Args:
center_lines (list[ndarray]): The text center lines list.
text_mask (ndarray): The text region mask.
center_region_mask (ndarray): The text center region mask.
top_height_map (ndarray): The distance map from each pixel in text
center region to top sideline.
bot_height_map (ndarray): The distance map from each pixel in text
center region to bottom sideline.
sin_map (ndarray): The sin(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
cos_map (ndarray): The cos(theta) map where theta is the angle
between vector (top point - bottom point) and vector (1, 0).
Returns:
pad_comp_attribs (ndarray): The padded text components attributes
with a fixed size.
"""
assert isinstance(center_lines, list)
assert (text_mask.shape == center_region_mask.shape ==
top_height_map.shape == bot_height_map.shape == sin_map.shape
== cos_map.shape)
comp_attribs = self.generate_comp_attribs_from_maps(
center_lines, center_region_mask, top_height_map, bot_height_map,
sin_map, cos_map, self.comp_shrink_ratio)
if comp_attribs is not None:
comp_attribs = self.jitter_comp_attribs(comp_attribs,
self.jitter_level)
if comp_attribs.shape[0] < self.min_comp_num:
rand_sample_num = self.min_comp_num - comp_attribs.shape[0]
rand_comp_attribs = self.generate_rand_comp_attribs(
rand_sample_num, 1 - text_mask)
comp_attribs = np.vstack([comp_attribs, rand_comp_attribs])
else:
comp_attribs = self.generate_rand_comp_attribs(
self.min_comp_num, 1 - text_mask)
comp_num = (
np.ones((comp_attribs.shape[0], 1), dtype=np.float32) *
comp_attribs.shape[0])
comp_attribs = np.hstack([comp_num, comp_attribs])
if comp_attribs.shape[0] > self.max_comp_num:
comp_attribs = comp_attribs[:self.max_comp_num, :]
comp_attribs[:, 0] = self.max_comp_num
pad_comp_attribs = np.zeros((self.max_comp_num, comp_attribs.shape[1]))
pad_comp_attribs[:comp_attribs.shape[0], :] = comp_attribs
return pad_comp_attribs
def generate_targets(self, results):
"""Generate the gt targets for DRRG.
Args:
results (dict): The input result dictionary.
Returns:
results (dict): The output result dictionary.
"""
assert isinstance(results, dict)
polygon_masks = results['gt_masks'].masks
polygon_masks_ignore = results['gt_masks_ignore'].masks
h, w, _ = results['img_shape']
gt_text_mask = self.generate_text_region_mask((h, w), polygon_masks)
gt_mask = self.generate_effective_mask((h, w), polygon_masks_ignore)
(center_lines, gt_center_region_mask, gt_top_height_map,
gt_bot_height_map, gt_sin_map,
gt_cos_map) = self.generate_center_mask_attrib_maps((h, w),
polygon_masks)
gt_comp_attribs = self.generate_comp_attribs(center_lines,
gt_text_mask,
gt_center_region_mask,
gt_top_height_map,
gt_bot_height_map,
gt_sin_map, gt_cos_map)
results['mask_fields'].clear() # rm gt_masks encoded by polygons
mapping = {
'gt_text_mask': gt_text_mask,
'gt_center_region_mask': gt_center_region_mask,
'gt_mask': gt_mask,
'gt_top_height_map': gt_top_height_map,
'gt_bot_height_map': gt_bot_height_map,
'gt_sin_map': gt_sin_map,
'gt_cos_map': gt_cos_map
}
for key, value in mapping.items():
value = value if isinstance(value, list) else [value]
results[key] = BitmapMasks(value, h, w)
results['mask_fields'].append(key)
results['gt_comp_attribs'] = gt_comp_attribs
return results