mirror of https://github.com/open-mmlab/mmocr.git
[Docs] Logger Hook Config Updated to Add WandB (#1345)
* [Docs] Logger Hook Config Updated to Add WandB * [Docs] WandB init_kwargs comment added * [Docs] WandbLoggerHook Details Added To Config Doc File * [Docs] WandbLoggerHook Details Added To Config Doc File (Pass lint test) * fix comment Co-authored-by: liukuikun <liukuikun@sensetime.com>pull/1463/head
parent
a7a3067769
commit
98ceffda7b
|
@ -223,16 +223,16 @@ Mainly include optimizer settings, `optimizer hook` settings, learning rate sche
|
|||
```python
|
||||
# The configuration file used to build the optimizer, support all optimizers in PyTorch.
|
||||
optimizer = dict(type='SGD', # Optimizer type
|
||||
lr=0.1, # Learning rate of optimizers, see detail usages of the parameters in the documentation of PyTorch
|
||||
momentum=0.9, # Momentum
|
||||
weight_decay=0.0001) # Weight decay of SGD
|
||||
lr=0.1, # Learning rate of optimizers, see detail usages of the parameters in the documentation of PyTorch
|
||||
momentum=0.9, # Momentum
|
||||
weight_decay=0.0001) # Weight decay of SGD
|
||||
# Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
|
||||
optimizer_config = dict(grad_clip=None) # Most of the methods do not use gradient clip
|
||||
# Learning rate scheduler config used to register LrUpdater hook
|
||||
lr_config = dict(policy='step', # The policy of scheduler, also support CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.
|
||||
step=[30, 60, 90]) # Steps to decay the learning rate
|
||||
runner = dict(type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner or EpochBasedRunner)
|
||||
max_epochs=100) # Runner that runs the workflow in total max_epochs. For IterBasedRunner use `max_iters`
|
||||
max_epochs=100) # Runner that runs the workflow in total max_epochs. For IterBasedRunner use `max_iters`
|
||||
```
|
||||
|
||||
### Runtime Setting
|
||||
|
@ -243,11 +243,16 @@ This part mainly includes saving the checkpoint strategy, log configuration, tra
|
|||
# Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
|
||||
checkpoint_config = dict(interval=1) # The save interval is 1
|
||||
# config to register logger hook
|
||||
log_config = dict(
|
||||
interval=100, # Interval to print the log
|
||||
log_config = dict( # Config to register logger hook
|
||||
interval=50, # Interval to print the log
|
||||
hooks=[
|
||||
dict(type='TextLoggerHook'), # The Tensorboard logger is also supported
|
||||
# dict(type='TensorboardLoggerHook')
|
||||
dict(type='TextLoggerHook', by_epoch=False),
|
||||
dict(type='TensorboardLoggerHook', by_epoch=False),
|
||||
dict(type='WandbLoggerHook', by_epoch=False, # The Wandb logger is also supported, It requires `wandb` to be installed.
|
||||
init_kwargs={
|
||||
'project': "MMOCR", # Project name in WandB
|
||||
}), # Check https://docs.wandb.ai/ref/python/init for more init arguments.
|
||||
# ClearMLLoggerHook, DvcliveLoggerHook, MlflowLoggerHook, NeptuneLoggerHook, PaviLoggerHook, SegmindLoggerHook are also supported based on MMCV implementation.
|
||||
])
|
||||
|
||||
dist_params = dict(backend='nccl') # Parameters to setup distributed training, the port can also be set.
|
||||
|
@ -337,8 +342,8 @@ The `train_cfg` and `test_cfg` are deprecated in config file, please specify the
|
|||
```python
|
||||
# deprecated
|
||||
model = dict(
|
||||
type=...,
|
||||
...
|
||||
type=...,
|
||||
...
|
||||
)
|
||||
train_cfg=dict(...)
|
||||
test_cfg=dict(...)
|
||||
|
@ -349,9 +354,9 @@ The migration example is as below.
|
|||
```python
|
||||
# recommended
|
||||
model = dict(
|
||||
type=...,
|
||||
...
|
||||
train_cfg=dict(...),
|
||||
test_cfg=dict(...),
|
||||
type=...,
|
||||
...
|
||||
train_cfg=dict(...),
|
||||
test_cfg=dict(...),
|
||||
)
|
||||
```
|
||||
|
|
Loading…
Reference in New Issue