Migrate configs to new styles

pull/1178/head
gaotongxiao 2022-05-13 15:55:06 +08:00
parent cb85f857aa
commit 98d9d39505
14 changed files with 118 additions and 106 deletions

View File

@ -1,17 +1,21 @@
# yapf:disable # custom_imports = dict(imports=['mmcv.transforms'], allow_failed_imports=False) # noqa
log_config = dict( default_scope = 'mmocr'
interval=5,
hooks=[ default_hooks = dict(
dict(type='TextLoggerHook') optimizer=dict(type='OptimizerHook', grad_clip=None),
]) timer=dict(type='IterTimerHook'),
# yapf:enable logger=dict(type='LoggerHook', interval=5),
dist_params = dict(backend='nccl') param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
sampler_seed=dict(type='DistSamplerSeedHook'),
)
env_cfg = dict(
cudnn_benchmark=True,
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
dist_cfg=dict(backend='nccl'),
)
log_level = 'INFO' log_level = 'INFO'
load_from = None load_from = None
resume_from = None resume = False
workflow = [('train', 1)]
# disable opencv multithreading to avoid system being overloaded
opencv_num_threads = 0
# set multi-process start method as `fork` to speed up the training
mp_start_method = 'fork'

View File

@ -1,8 +0,0 @@
# optimizer
optimizer = dict(type='Adadelta', lr=0.5)
optimizer_config = dict(grad_clip=dict(max_norm=0.5))
# learning policy
lr_config = dict(policy='step', step=[8, 14, 16])
# running settings
runner = dict(type='EpochBasedRunner', max_epochs=18)
checkpoint_config = dict(interval=1)

View File

@ -1,8 +1,10 @@
# optimizer
optimizer = dict(type='Adadelta', lr=1.0) optimizer = dict(type='Adadelta', lr=1.0)
optimizer_config = dict(grad_clip=None)
# learning policy train_cfg = dict(by_epoch=True, max_epochs=5)
lr_config = dict(policy='step', step=[]) val_cfg = dict(interval=1)
# running settings test_cfg = dict()
runner = dict(type='EpochBasedRunner', max_epochs=5)
checkpoint_config = dict(interval=1) # learning rate
param_scheduler = [
dict(type='ConstantLR'),
]

View File

@ -1,8 +1,11 @@
# optimizer # optimizer
optimizer = dict(type='Adam', lr=1e-3) optimizer = dict(type='Adam', lr=1e-3)
optimizer_config = dict(grad_clip=None)
# learning policy train_cfg = dict(by_epoch=True, max_epochs=600)
lr_config = dict(policy='poly', power=0.9) val_cfg = dict(interval=20)
# running settings test_cfg = dict()
runner = dict(type='EpochBasedRunner', max_epochs=600)
checkpoint_config = dict(interval=100) # learning rate
param_scheduler = [
dict(type='PolyLR', power=0.9, end=600),
]

View File

@ -1,12 +1,12 @@
# optimizer # optimizer
optimizer = dict(type='Adam', lr=4e-4) optimizer = dict(type='Adam', lr=4e-4)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=True, max_epochs=12)
val_cfg = dict(interval=1)
test_cfg = dict()
# learning policy # learning policy
lr_config = dict( param_scheduler = [
policy='step', dict(type='LinearLR', end=100, by_epoch=False),
warmup='linear', dict(type='MultiStepLR', milestones=[11], end=12),
warmup_iters=100, ]
warmup_ratio=1.0 / 3,
step=[11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
checkpoint_config = dict(interval=1)

View File

@ -1,14 +1,12 @@
# optimizer # optimizer
optimizer = dict(type='Adam', lr=1e-4) optimizer = dict(type='Adam', lr=1e-4)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=True, max_epochs=20)
val_cfg = dict(interval=1)
test_cfg = dict()
# learning policy # learning policy
lr_config = dict( param_scheduler = [
policy='step', dict(type='LinearLR', end=1, start_factor=0.001),
step=[16, 18], dict(type='MultiStepLR', milestones=[16, 18], end=20),
warmup='linear', ]
warmup_iters=1,
warmup_ratio=0.001,
warmup_by_epoch=True)
# running settings
runner = dict(type='EpochBasedRunner', max_epochs=20)
checkpoint_config = dict(interval=1)

View File

@ -1,8 +1,11 @@
# optimizer # optimizer
optimizer = dict(type='Adam', lr=1e-3) optimizer = dict(type='Adam', lr=1e-3)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=True, max_epochs=5)
val_cfg = dict(interval=1)
test_cfg = dict()
# learning policy # learning policy
lr_config = dict(policy='step', step=[3, 4]) param_scheduler = [
# running settings dict(type='MultiStepLR', milestones=[3, 4], end=5),
runner = dict(type='EpochBasedRunner', max_epochs=5) ]
checkpoint_config = dict(interval=1)

View File

@ -1,8 +1,11 @@
# optimizer # optimizer
optimizer = dict(type='Adam', lr=1e-4) optimizer = dict(type='Adam', lr=1e-4)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=True, max_epochs=600)
val_cfg = dict(interval=40)
test_cfg = dict()
# learning policy # learning policy
lr_config = dict(policy='step', step=[200, 400]) param_scheduler = [
# running settings dict(type='MultiStepLR', milestones=[200, 400], end=600),
runner = dict(type='EpochBasedRunner', max_epochs=600) ]
checkpoint_config = dict(interval=100)

View File

@ -1,8 +1,8 @@
# optimizer _base_ = 'schedule_adam_step_5e.py'
optimizer = dict(type='Adam', lr=1e-3)
optimizer_config = dict(grad_clip=None) train_cfg = dict(by_epoch=True, max_epochs=6)
# learning policy # learning policy
lr_config = dict(policy='step', step=[3, 4]) param_scheduler = [
# running settings dict(type='MultiStepLR', milestones=[3, 4], end=6),
runner = dict(type='EpochBasedRunner', max_epochs=6) ]
checkpoint_config = dict(interval=1)

View File

@ -1,8 +1,11 @@
# optimizer # optimizer
optimizer = dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001) optimizer = dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=False, max_iters=100000)
val_cfg = dict(interval=100001) # Never evaluate
test_cfg = dict()
# learning policy # learning policy
lr_config = dict(policy='poly', power=0.9, min_lr=1e-7, by_epoch=False) param_scheduler = [
# running settings dict(type='PolyLR', power=0.9, eta_min=1e-7, by_epoch=False, end=100000),
runner = dict(type='IterBasedRunner', max_iters=100000) ]
checkpoint_config = dict(interval=10000)

View File

@ -1,8 +1,11 @@
# optimizer # optimizer
optimizer = dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001) optimizer = dict(type='SGD', lr=0.007, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=True, max_epochs=1200)
val_cfg = dict(interval=20) # Never evaluate
test_cfg = dict()
# learning policy # learning policy
lr_config = dict(policy='poly', power=0.9, min_lr=1e-7, by_epoch=True) param_scheduler = [
# running settings dict(type='PolyLR', power=0.9, eta_min=1e-7, end=1200),
runner = dict(type='EpochBasedRunner', max_epochs=1200) ]
checkpoint_config = dict(interval=100)

View File

@ -1,8 +1,8 @@
# optimizer train_cfg = dict(by_epoch=True, max_epochs=1500)
optimizer = dict(type='SGD', lr=1e-3, momentum=0.90, weight_decay=5e-4) val_cfg = dict(interval=20) # Never evaluate
optimizer_config = dict(grad_clip=None) test_cfg = dict()
# learning policy # learning policy
lr_config = dict(policy='poly', power=0.9, min_lr=1e-7, by_epoch=True) param_scheduler = [
# running settings dict(type='PolyLR', power=0.9, eta_min=1e-7, end=1500),
runner = dict(type='EpochBasedRunner', max_epochs=1500) ]
checkpoint_config = dict(interval=100)

View File

@ -1,13 +1,12 @@
# optimizer # optimizer
optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001) optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=True, max_epochs=160)
val_cfg = dict(interval=20)
test_cfg = dict()
# learning policy # learning policy
lr_config = dict( param_scheduler = [
policy='step', dict(type='LinearLR', end=500, start_factor=0.001, by_epoch=False),
warmup='linear', dict(type='MultiStepLR', milestones=[80, 128], end=160),
warmup_iters=500, ]
warmup_ratio=0.001,
step=[80, 128])
# running settings
runner = dict(type='EpochBasedRunner', max_epochs=160)
checkpoint_config = dict(interval=10)

View File

@ -1,8 +1,10 @@
# optimizer
optimizer = dict(type='SGD', lr=1e-3, momentum=0.99, weight_decay=5e-4) optimizer = dict(type='SGD', lr=1e-3, momentum=0.99, weight_decay=5e-4)
optimizer_config = dict(grad_clip=None)
train_cfg = dict(by_epoch=True, max_epochs=600)
val_cfg = dict(interval=50)
test_cfg = dict()
# learning policy # learning policy
lr_config = dict(policy='step', step=[200, 400]) param_scheduler = [
# running settings dict(type='MultiStepLR', milestones=[200, 400], end=600),
runner = dict(type='EpochBasedRunner', max_epochs=600) ]
checkpoint_config = dict(interval=100)