mirror of https://github.com/open-mmlab/mmocr.git
Format readme (#23)
* Format readme Signed-off-by: lizz <lizz@sensetime.com> * try Signed-off-by: lizz <lizz@sensetime.com> * Remove redudant config link Signed-off-by: lizz <lizz@sensetime.com>pull/2/head
parent
b10bb9eb6a
commit
9d62bdf84c
|
@ -23,6 +23,6 @@
|
||||||
|
|
||||||
### ICDAR2015
|
### ICDAR2015
|
||||||
|
|
||||||
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
||||||
| :--------------------------------------------------------------------: | :--------------: | :-------------: | :------------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
| :--------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------: | :-------------: | :------------: | :-----: | :-------: | :----: | :-------: | :---: | :-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||||
| [DBNet](/configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-aa96e477.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.796 | 0.866 | 0.830 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20210325-91cef9af.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20210325-91cef9af.pth.log.json) |
|
| [DBNet](/configs/textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py) | [Synthtext](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_2e_synthtext_20210325-aa96e477.pth) | ICDAR2015 Train | ICDAR2015 Test | 1200 | 1024 | 0.796 | 0.866 | 0.830 | [model](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20210325-91cef9af.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/dbnet/dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20210325-91cef9af.pth.log.json) |
|
||||||
|
|
|
@ -17,13 +17,13 @@
|
||||||
|
|
||||||
### CTW1500
|
### CTW1500
|
||||||
|
|
||||||
|Method | Backbone|Extra Data | Training set | Test set | #epochs | Test size|Recall|Precision|Hmean|Download|
|
| Method | Backbone | Extra Data | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
||||||
|:------:| :------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
|
| :------------------------------------------------------------------: | :------: | :--------: | :-----------: | :----------: | :-----: | :-------: | :----: | :-------: | :---: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||||
|[PSENet-4s](/configs/textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py) |ResNet50 |-|CTW1500 Train|CTW1500 Test|600|1280|0.728|0.849|0.784|[model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_ctw1500_20210401-216fed50.pth) | [config](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_ctw1500_20210401.py) | [log](https://download.openmmlab.com/mmocr/textdet/psenet/20210401_215421.log.json)|
|
| [PSENet-4s](/configs/textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py) | ResNet50 | - | CTW1500 Train | CTW1500 Test | 600 | 1280 | 0.728 | 0.849 | 0.784 | [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_ctw1500_20210401-216fed50.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/psenet/20210401_215421.log.json) |
|
||||||
|
|
||||||
### ICDAR2015
|
### ICDAR2015
|
||||||
|
|
||||||
|Method | Backbone| Extra Data | Training set | Test set | #epochs | Test size|Recall|Precision|Hmean|Download|
|
| Method | Backbone | Extra Data | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
||||||
|:------:| :------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
|
| :--------------------------------------------------------------------: | :------: | :---------------------------------------------------------------------------------------------------------------------------------------: | :----------: | :-------: | :-----: | :-------: | :----: | :-------: | :---: | :---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||||
|[PSENet-4s](/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) |ResNet50 |-|IC15 Train|IC15 Test|600|2240|0.784|0.831|0.807|[model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015-c6131f0d.pth) | [config](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | [log](https://download.openmmlab.com/mmocr/textdet/psenet/20210331_214145.log.json)|
|
| [PSENet-4s](/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | ResNet50 | - | IC15 Train | IC15 Test | 600 | 2240 | 0.784 | 0.831 | 0.807 | [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015-c6131f0d.pth) \| [log](https://download.openmmlab.com/mmocr/textdet/psenet/20210331_214145.log.json) |
|
||||||
|[PSENet-4s](/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) |ResNet50 |pretrain on IC17 MLT [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2017_as_pretrain-0af6d62c.pth)|IC15 Train|IC15 Test|600|2240|0.834|0.861|0.847|[model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-ac477383.pth) | [config](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) |
|
| [PSENet-4s](/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | ResNet50 | pretrain on IC17 MLT [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2017_as_pretrain-0af6d62c.pth) | IC15 Train | IC15 Test | 600 | 2240 | 0.834 | 0.861 | 0.847 | [model](https://download.openmmlab.com/mmocr/textdet/psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-ac477383.pth) \| [log]() |
|
||||||
|
|
|
@ -18,6 +18,6 @@
|
||||||
|
|
||||||
### CTW1500
|
### CTW1500
|
||||||
|
|
||||||
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
| Method | Pretrained Model | Training set | Test set | #epochs | Test size | Recall | Precision | Hmean | Download |
|
||||||
| :----------------------------------------------------------------------------: | :--------------: | :-----------: | :----------: | :-----: | :-------: | :----: | :-------: | :---: | :-------------------: |
|
| :----------------------------------------------------------------------------: | :--------------: | :-----------: | :----------: | :-----: | :-------: | :----: | :-------: | :---: | :--------------------------------------------------------------------------------------------------------------------------: |
|
||||||
| [TextSnake](/configs/textdet/textsnake/textsnake_r50_fpn_unet_600e_ctw1500.py) | ImageNet | CTW1500 Train | CTW1500 Test | 1200 | 736 | 0.795 | 0.840 | 0.817 | [model](https://download.openmmlab.com/mmocr/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500-27f65b64.pth) | [config](https://download.openmmlab.com/mmocr/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py) |
|
| [TextSnake](/configs/textdet/textsnake/textsnake_r50_fpn_unet_600e_ctw1500.py) | ImageNet | CTW1500 Train | CTW1500 Test | 1200 | 736 | 0.795 | 0.840 | 0.817 | [model](https://download.openmmlab.com/mmocr/textdet/textsnake/textsnake_r50_fpn_unet_1200e_ctw1500-27f65b64.pth) \| [log]() |
|
||||||
|
|
|
@ -4,7 +4,7 @@
|
||||||
|
|
||||||
[ALGORITHM]
|
[ALGORITHM]
|
||||||
|
|
||||||
```latex
|
```bibtex
|
||||||
@article{shi2016end,
|
@article{shi2016end,
|
||||||
title={An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition},
|
title={An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition},
|
||||||
author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
|
author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
|
||||||
|
@ -31,7 +31,7 @@
|
||||||
|
|
||||||
## Results and models
|
## Results and models
|
||||||
|
|
||||||
| methods | | Regular Text | | | | Irregular Text | | download |
|
| methods | | Regular Text | | | | Irregular Text | | download |
|
||||||
| :-----: | :----: | :----------: | :--: | :-: | :--: | :------------: | :--: | :---------------------------------------------------------: |
|
| :-----: | :----: | :----------: | :--: | :-: | :--: | :------------: | :--: | :------------------: |
|
||||||
| methods | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 |
|
| methods | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 |
|
||||||
| CRNN | 80.5 | 81.5 | 86.5 | | - | - | - | [config](https://download.openmmlab.com/mmocr/textrecog/crnn/crnn_academic_dataset.py) [log]() [model](https) |
|
| CRNN | 80.5 | 81.5 | 86.5 | | - | - | - | [model]() \| [log]() |
|
||||||
|
|
|
@ -4,7 +4,7 @@
|
||||||
|
|
||||||
[ALGORITHM]
|
[ALGORITHM]
|
||||||
|
|
||||||
```
|
```bibtex
|
||||||
@inproceedings{li2019show,
|
@inproceedings{li2019show,
|
||||||
title={Show, attend and read: A simple and strong baseline for irregular text recognition},
|
title={Show, attend and read: A simple and strong baseline for irregular text recognition},
|
||||||
author={Li, Hui and Wang, Peng and Shen, Chunhua and Zhang, Guyu},
|
author={Li, Hui and Wang, Peng and Shen, Chunhua and Zhang, Guyu},
|
||||||
|
@ -43,22 +43,24 @@
|
||||||
| CT80 | 288 | irregular |
|
| CT80 | 288 | irregular |
|
||||||
|
|
||||||
## Results and Models
|
## Results and Models
|
||||||
| Methods|Backbone|Decoder||Regular Text||||Irregular Text||download|
|
|
||||||
| :-------------: | :-----: | :-----: | :-----: | :------: | :-----: | :----: | :-----: | :-----: | :-----: |:-----: |
|
| Methods | Backbone | Decoder | | Regular Text | | | | Irregular Text | | download |
|
||||||
||||IIIT5K|SVT|IC13||IC15|SVTP|CT80|
|
| :-----------------------------------------------------------------: | :---------: | :------------------: | :----: | :----------: | :--: | :-: | :--: | :------------: | :--: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||||
|[SAR](/configs/textrecog/sar/sar_r31_parallel_decoder_academic.py)|R31-1/8-1/4|ParallelSARDecoder|95.0|89.6|93.7||79.0|82.2|88.9|[model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_parallel_decoder_academic-dba3a4a3.pth) | [config](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_parallel_decoder_academic.py) | [log](https://download.openmmlab.com/mmocr/textrecog/sar/20210327_154129.log.json) |
|
| | | | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 |
|
||||||
|[SAR](configs/textrecog/sar/sar_r31_sequential_decoder_academic.py)|R31-1/8-1/4|SequentialSARDecoder|95.2|88.7|92.4||78.2|81.9|89.6|[model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_sequential_decoder_academic-d06c9a8e.pth) | [config](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_sequential_decoder_academic.py) | [log](https://download.openmmlab.com/mmocr/textrecog/sar/20210330_105728.log.json)|
|
| [SAR](/configs/textrecog/sar/sar_r31_parallel_decoder_academic.py) | R31-1/8-1/4 | ParallelSARDecoder | 95.0 | 89.6 | 93.7 | | 79.0 | 82.2 | 88.9 | [model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_parallel_decoder_academic-dba3a4a3.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/sar/20210327_154129.log.json) |
|
||||||
|
| [SAR](configs/textrecog/sar/sar_r31_sequential_decoder_academic.py) | R31-1/8-1/4 | SequentialSARDecoder | 95.2 | 88.7 | 92.4 | | 78.2 | 81.9 | 89.6 | [model](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_sequential_decoder_academic-d06c9a8e.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/sar/20210330_105728.log.json) |
|
||||||
|
|
||||||
**Notes:**
|
**Notes:**
|
||||||
- `R31-1/8-1/4` means the height of feature from backbone is 1/8 of input image, where 1/4 for width.
|
|
||||||
- We did not use beam search during decoding.
|
- `R31-1/8-1/4` means the height of feature from backbone is 1/8 of input image, where 1/4 for width.
|
||||||
- We implemented two kinds of decoder. Namely, `ParallelSARDecoder` and `SequentialSARDecoder`.
|
- We did not use beam search during decoding.
|
||||||
- `ParallelSARDecoder`: Parallel decoding during training with `LSTM` layer. It would be faster.
|
- We implemented two kinds of decoder. Namely, `ParallelSARDecoder` and `SequentialSARDecoder`.
|
||||||
- `SequentialSARDecoder`: Sequential Decoding during training with `LSTMCell`. It would be easier to understand.
|
- `ParallelSARDecoder`: Parallel decoding during training with `LSTM` layer. It would be faster.
|
||||||
- For train dataset.
|
- `SequentialSARDecoder`: Sequential Decoding during training with `LSTMCell`. It would be easier to understand.
|
||||||
- We did not construct distinct data groups (20 groups in [[1]](#1)) to train the model group-by-group since it would render model training too complicated.
|
- For train dataset.
|
||||||
- Instead, we randomly selected `2.4m` patches from `Syn90k`, `2.4m` from `SynthText` and `1.2m` from `SynthAdd`, and grouped all data together. See [config](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_academic.py) for details.
|
- We did not construct distinct data groups (20 groups in [[1]](#1)) to train the model group-by-group since it would render model training too complicated.
|
||||||
- We used 48 GPUs with `total_batch_size = 64 * 48` in the experiment above to speedup training, while keeping the `initial lr = 1e-3` unchanged.
|
- Instead, we randomly selected `2.4m` patches from `Syn90k`, `2.4m` from `SynthText` and `1.2m` from `SynthAdd`, and grouped all data together. See [config](https://download.openmmlab.com/mmocr/textrecog/sar/sar_r31_academic.py) for details.
|
||||||
|
- We used 48 GPUs with `total_batch_size = 64 * 48` in the experiment above to speedup training, while keeping the `initial lr = 1e-3` unchanged.
|
||||||
|
|
||||||
## References
|
## References
|
||||||
|
|
||||||
|
|
|
@ -24,11 +24,11 @@ A Baseline Method for Segmentation based Text Recognition.
|
||||||
| CT80 | 288 | irregular |
|
| CT80 | 288 | irregular |
|
||||||
|
|
||||||
## Results and Models
|
## Results and Models
|
||||||
|Backbone|Neck|Head|||Regular Text|||Irregular Text|base_lr|batch_size/gpu|gpus|download
|
|
||||||
| :-------------: | :-----: | :-----: | :------: | :-----: | :----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: | :-----: |
|
|
||||||
|||||IIIT5K|SVT|IC13||CT80|
|
|
||||||
|R31-1/16|FPNOCR|1x||90.9|81.8|90.7||80.9|1e-4|16|4|[model](https://download.openmmlab.com/mmocr/textrecog/seg/seg_r31_1by16_fpnocr_academic-0c50e163.pth) | [config](https://download.openmmlab.com/mmocr/textrecog/seg/seg_r31_1by16_fpnocr_academic.py) | [log](https://download.openmmlab.com/mmocr/textrecog/seg/20210325_112835.log.json) |
|
|
||||||
|
|
||||||
|
| Backbone | Neck | Head | | | Regular Text | | | Irregular Text | base_lr | batch_size/gpu | gpus | download |
|
||||||
|
| :------: | :----: | :--: | :-: | :----: | :----------: | :--: | :-: | :------------: | :-----: | :------------: | :--: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||||
|
| | | | | IIIT5K | SVT | IC13 | | CT80 |
|
||||||
|
| R31-1/16 | FPNOCR | 1x | | 90.9 | 81.8 | 90.7 | | 80.9 | 1e-4 | 16 | 4 | [model](https://download.openmmlab.com/mmocr/textrecog/seg/seg_r31_1by16_fpnocr_academic-0c50e163.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/seg/20210325_112835.log.json) |
|
||||||
|
|
||||||
**Notes:**
|
**Notes:**
|
||||||
|
|
||||||
|
|
|
@ -1,5 +1,7 @@
|
||||||
## Introduction
|
## Introduction
|
||||||
|
|
||||||
|
[ALGORITHM]
|
||||||
|
|
||||||
### Train Dataset
|
### Train Dataset
|
||||||
|
|
||||||
| trainset | instance_num | repeat_num | note |
|
| trainset | instance_num | repeat_num | note |
|
||||||
|
@ -24,7 +26,7 @@
|
||||||
|
|
||||||
## Results and models
|
## Results and models
|
||||||
|
|
||||||
| methods | | Regular Text | | | | Irregular Text | | download |
|
| methods | | Regular Text | | | | Irregular Text | | download |
|
||||||
| :---------: | :----: | :----------: | :--: | :-: | :--: | :------------: | :--: | :------: |
|
| :---------: | :----: | :----------: | :--: | :-: | :--: | :------------: | :--: | :------------------: |
|
||||||
| | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 |
|
| | IIIT5K | SVT | IC13 | | IC15 | SVTP | CT80 |
|
||||||
| Transformer | 93.3 | 85.8 | 91.3 | | 73.2 | 76.6 | 87.8 | |
|
| Transformer | 93.3 | 85.8 | 91.3 | | 73.2 | 76.6 | 87.8 | [model]() \| [log]() |
|
||||||
|
|
|
@ -114,7 +114,7 @@ This page lists the datasets which are commonly used in text detection, text rec
|
||||||
| svt | | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | |
|
| svt | | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/The_Street_View_Text_Dataset) | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svt/test_label.txt) | |
|
||||||
| svtp | | - | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | |
|
| svtp | | - | - | [test_label.txt](https://download.openmmlab.com/mmocr/data/mixture/svtp/test_label.txt) | |
|
||||||
| Synth90k | | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Synth90k/shuffle_labels.txt) | - | |
|
| Synth90k | | [homepage](https://www.robots.ox.ac.uk/~vgg/data/text/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/Synth90k/shuffle_labels.txt) | - | |
|
||||||
| SynthText | | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) | [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) | - | |
|
| SynthText | | [homepage](https://www.robots.ox.ac.uk/~vgg/data/scenetext/) | [shuffle_labels.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/shuffle_labels.txt) \| [instances_train.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthText/instances_train.txt) | - | |
|
||||||
| SynthAdd | | [SynthText_Add.zip](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/SynthText_Add.zip) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)|- | |
|
| SynthAdd | | [SynthText_Add.zip](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/SynthText_Add.zip) | [label.txt](https://download.openmmlab.com/mmocr/data/mixture/SynthAdd/label.txt)|- | |
|
||||||
|
|
||||||
- For `icdar_2013`:
|
- For `icdar_2013`:
|
||||||
|
|
Loading…
Reference in New Issue