[Config] Update NRTR configs (#1302)

* [Config] Add textrec_default_runtime

* add vis hook

* update nrtr configs

* Update configs/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj.py

Co-authored-by: gaotongxiao <gaotongxiao@gmail.com>
pull/1303/head
Xinyu Wang 2022-08-22 14:44:46 +08:00 committed by GitHub
parent 7aea3619ca
commit b2e06c04f5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 270 additions and 412 deletions

View File

@ -0,0 +1,62 @@
file_client_args = dict(backend='disk')
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(type='NRTRModalityTransform'),
encoder=dict(type='NRTREncoder', n_layers=12),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor'),
dictionary=dictionary,
max_seq_len=30),
data_preprocessor=dict(
type='TextRecogDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
ignore_empty=True,
min_size=5),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=16),
dict(type='PadToWidth', width=160),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]

View File

@ -0,0 +1,68 @@
file_client_args = dict(backend='disk')
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
last_stage_pool=True),
encoder=dict(type='NRTREncoder'),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor'),
dictionary=dictionary,
max_seq_len=30,
),
data_preprocessor=dict(
type='TextRecogDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
ignore_empty=True,
min_size=5),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=16),
dict(type='PadToWidth', width=160),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]

View File

@ -17,9 +17,9 @@ Collections:
README: configs/textrecog/nrtr/README.md
Models:
- Name: nrtr_r31_1by16_1by8_academic
- Name: nrtr_resnet31-1by16-1by8_6e_st_mj
In Collection: NRTR
Config: configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py
Config: configs/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj.py
Metadata:
Training Data:
- SynthText
@ -51,9 +51,9 @@ Models:
word_acc: 87.15
Weights: https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_1by16_1by8_academic_20211124-f60cebf4.pth
- Name: nrtr_r31_1by8_1by4_academic
- Name: nrtr_resnet31-1by8-1by4_6e_st_mj
In Collection: NRTR
Config: configs/textrecog/nrtr/nrtr_r31_1by8_1by4_academic.py
Config: configs/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj.py
Metadata:
Training Data:
- SynthText

View File

@ -0,0 +1,45 @@
_base_ = [
'../../_base_/recog_datasets/mjsynth.py',
'../../_base_/recog_datasets/synthtext.py',
'../../_base_/recog_datasets/cute80.py',
'../../_base_/recog_datasets/iiit5k.py',
'../../_base_/recog_datasets/svt.py',
'../../_base_/recog_datasets/svtp.py',
'../../_base_/recog_datasets/icdar2013.py',
'../../_base_/recog_datasets/icdar2015.py',
'../../_base_/textrec_default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py',
'_base_nrtr_modality-transform.py',
]
# optimizer settings
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
# dataset settings
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
test_list = [
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
]
train_dataset = dict(
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
train_dataloader = dict(
batch_size=384,
num_workers=32,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
val_dataloader = test_dataloader

View File

@ -0,0 +1,41 @@
_base_ = [
'../../_base_/recog_datasets/toy_data.py',
'../../_base_/textrec_default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py',
'_base_nrtr_modality-transform.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
train_dataset = dict(
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
test_dataloader = val_dataloader
val_evaluator = [
dict(
type='WordMetric', mode=['exact', 'ignore_case',
'ignore_case_symbol']),
dict(type='CharMetric')
]
test_evaluator = val_evaluator

View File

@ -1,24 +0,0 @@
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(type='NRTRModalityTransform'),
encoder=dict(type='NRTREncoder', n_layers=12),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor'),
dictionary=dictionary,
max_seq_len=30),
data_preprocessor=dict(
type='TextRecogDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))

View File

@ -1,93 +0,0 @@
_base_ = [
'../../_base_/recog_datasets/mjsynth.py',
'../../_base_/recog_datasets/synthtext.py',
'../../_base_/recog_datasets/cute80.py',
'../../_base_/recog_datasets/iiit5k.py',
'../../_base_/recog_datasets/svt.py',
'../../_base_/recog_datasets/svtp.py',
'../../_base_/recog_datasets/icdar2013.py',
'../../_base_/recog_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py',
'nrtr_modality_transform.py',
]
# optimizer settings
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
# dataset settings
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
test_list = [
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
]
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
ignore_empty=True,
min_size=5),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=16),
dict(type='PadToWidth', width=160),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
train_dataloader = dict(
batch_size=384,
num_workers=32,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
val_dataloader = test_dataloader
val_evaluator = dict(
type='MultiDatasetsEvaluator',
metrics=[
dict(
type='WordMetric',
mode=['exact', 'ignore_case', 'ignore_case_symbol']),
dict(type='CharMetric')
],
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')

View File

@ -1,73 +0,0 @@
_base_ = [
'../../_base_/recog_datasets/toy_data.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py',
'nrtr_modality_transform.py',
]
# dataset settings
train_list = {{_base_.train_list}}
test_list = {{_base_.test_list}}
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
train_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=16),
dict(type='PadToWidth', width=160),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = [
dict(
type='WordMetric', mode=['exact', 'ignore_case',
'ignore_case_symbol']),
dict(type='CharMetric')
]
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')

View File

@ -1,30 +0,0 @@
dictionary = dict(
type='Dictionary',
dict_file='dicts/english_digits_symbols.txt',
with_padding=True,
with_unknown=True,
same_start_end=True,
with_start=True,
with_end=True)
model = dict(
type='NRTR',
backbone=dict(
type='ResNet31OCR',
layers=[1, 2, 5, 3],
channels=[32, 64, 128, 256, 512, 512],
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
last_stage_pool=True),
encoder=dict(type='NRTREncoder'),
decoder=dict(
type='NRTRDecoder',
module_loss=dict(
type='CEModuleLoss', ignore_first_char=True, flatten=True),
postprocessor=dict(type='AttentionPostprocessor'),
dictionary=dictionary,
max_seq_len=30,
),
data_preprocessor=dict(
type='TextRecogDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375]))

View File

@ -1,93 +0,0 @@
_base_ = [
'../../_base_/recog_datasets/mjsynth.py',
'../../_base_/recog_datasets/synthtext.py',
'../../_base_/recog_datasets/cute80.py',
'../../_base_/recog_datasets/iiit5k.py',
'../../_base_/recog_datasets/svt.py',
'../../_base_/recog_datasets/svtp.py',
'../../_base_/recog_datasets/icdar2013.py',
'../../_base_/recog_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py',
'nrtr_r31.py',
]
# optimizer settings
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
# dataset settings
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
test_list = [
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
]
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
ignore_empty=True,
min_size=5),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=16),
dict(type='PadToWidth', width=160),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
train_dataloader = dict(
batch_size=384,
num_workers=24,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
val_dataloader = test_dataloader
val_evaluator = dict(
type='MultiDatasetsEvaluator',
metrics=[
dict(
type='WordMetric',
mode=['exact', 'ignore_case', 'ignore_case_symbol']),
dict(type='CharMetric')
],
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')

View File

@ -1,95 +0,0 @@
_base_ = [
'../../_base_/recog_datasets/mjsynth.py',
'../../_base_/recog_datasets/synthtext.py',
'../../_base_/recog_datasets/cute80.py',
'../../_base_/recog_datasets/iiit5k.py',
'../../_base_/recog_datasets/svt.py',
'../../_base_/recog_datasets/svtp.py',
'../../_base_/recog_datasets/icdar2013.py',
'../../_base_/recog_datasets/icdar2015.py',
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py',
'nrtr_r31.py',
]
# optimizer settings
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
# dataset settings
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
test_list = [
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
]
file_client_args = dict(backend='disk')
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
model = dict(backbone=dict(last_stage_pool=False))
train_pipeline = [
dict(
type='LoadImageFromFile',
file_client_args=file_client_args,
ignore_empty=True,
min_size=5),
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=4),
dict(type='PadToWidth', width=160),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
test_pipeline = [
dict(type='LoadImageFromFile', file_client_args=file_client_args),
dict(
type='RescaleToHeight',
height=32,
min_width=32,
max_width=160,
width_divisor=16),
dict(type='PadToWidth', width=160),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadOCRAnnotations', with_text=True),
dict(
type='PackTextRecogInputs',
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
]
train_dataloader = dict(
batch_size=384,
num_workers=32,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
val_dataloader = test_dataloader
val_evaluator = dict(
type='MultiDatasetsEvaluator',
metrics=[
dict(
type='WordMetric',
mode=['exact', 'ignore_case', 'ignore_case_symbol']),
dict(type='CharMetric')
],
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')

View File

@ -0,0 +1,45 @@
_base_ = [
'../../_base_/recog_datasets/mjsynth.py',
'../../_base_/recog_datasets/synthtext.py',
'../../_base_/recog_datasets/cute80.py',
'../../_base_/recog_datasets/iiit5k.py',
'../../_base_/recog_datasets/svt.py',
'../../_base_/recog_datasets/svtp.py',
'../../_base_/recog_datasets/icdar2013.py',
'../../_base_/recog_datasets/icdar2015.py',
'../../_base_/textrec_default_runtime.py',
'../../_base_/schedules/schedule_adam_step_6e.py',
'_base_nrtr_resnet31.py',
]
# optimizer settings
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
# dataset settings
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
test_list = [
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
]
train_dataset = dict(
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
train_dataloader = dict(
batch_size=384,
num_workers=24,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
test_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=test_dataset)
val_dataloader = test_dataloader

View File

@ -0,0 +1,5 @@
_base_ = [
'nrtr_resnet31-1by16-1by8_6e_st_mj.py',
]
model = dict(backbone=dict(last_stage_pool=False))