mirror of https://github.com/open-mmlab/mmocr.git
[Config] Update NRTR configs (#1302)
* [Config] Add textrec_default_runtime * add vis hook * update nrtr configs * Update configs/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj.py Co-authored-by: gaotongxiao <gaotongxiao@gmail.com>pull/1303/head
parent
7aea3619ca
commit
b2e06c04f5
|
@ -0,0 +1,62 @@
|
|||
file_client_args = dict(backend='disk')
|
||||
|
||||
dictionary = dict(
|
||||
type='Dictionary',
|
||||
dict_file='dicts/english_digits_symbols.txt',
|
||||
with_padding=True,
|
||||
with_unknown=True,
|
||||
same_start_end=True,
|
||||
with_start=True,
|
||||
with_end=True)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
backbone=dict(type='NRTRModalityTransform'),
|
||||
encoder=dict(type='NRTREncoder', n_layers=12),
|
||||
decoder=dict(
|
||||
type='NRTRDecoder',
|
||||
module_loss=dict(
|
||||
type='CEModuleLoss', ignore_first_char=True, flatten=True),
|
||||
postprocessor=dict(type='AttentionPostprocessor'),
|
||||
dictionary=dictionary,
|
||||
max_seq_len=30),
|
||||
data_preprocessor=dict(
|
||||
type='TextRecogDataPreprocessor',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375]))
|
||||
|
||||
train_pipeline = [
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
ignore_empty=True,
|
||||
min_size=5),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=4),
|
||||
dict(type='PadToWidth', width=160),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=16),
|
||||
dict(type='PadToWidth', width=160),
|
||||
# add loading annotation after ``Resize`` because ground truth
|
||||
# does not need to do resize data transform
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
|
@ -0,0 +1,68 @@
|
|||
file_client_args = dict(backend='disk')
|
||||
|
||||
dictionary = dict(
|
||||
type='Dictionary',
|
||||
dict_file='dicts/english_digits_symbols.txt',
|
||||
with_padding=True,
|
||||
with_unknown=True,
|
||||
same_start_end=True,
|
||||
with_start=True,
|
||||
with_end=True)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
backbone=dict(
|
||||
type='ResNet31OCR',
|
||||
layers=[1, 2, 5, 3],
|
||||
channels=[32, 64, 128, 256, 512, 512],
|
||||
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
|
||||
last_stage_pool=True),
|
||||
encoder=dict(type='NRTREncoder'),
|
||||
decoder=dict(
|
||||
type='NRTRDecoder',
|
||||
module_loss=dict(
|
||||
type='CEModuleLoss', ignore_first_char=True, flatten=True),
|
||||
postprocessor=dict(type='AttentionPostprocessor'),
|
||||
dictionary=dictionary,
|
||||
max_seq_len=30,
|
||||
),
|
||||
data_preprocessor=dict(
|
||||
type='TextRecogDataPreprocessor',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375]))
|
||||
|
||||
train_pipeline = [
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
ignore_empty=True,
|
||||
min_size=5),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=4),
|
||||
dict(type='PadToWidth', width=160),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=16),
|
||||
dict(type='PadToWidth', width=160),
|
||||
# add loading annotation after ``Resize`` because ground truth
|
||||
# does not need to do resize data transform
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
|
@ -17,9 +17,9 @@ Collections:
|
|||
README: configs/textrecog/nrtr/README.md
|
||||
|
||||
Models:
|
||||
- Name: nrtr_r31_1by16_1by8_academic
|
||||
- Name: nrtr_resnet31-1by16-1by8_6e_st_mj
|
||||
In Collection: NRTR
|
||||
Config: configs/textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py
|
||||
Config: configs/textrecog/nrtr/nrtr_resnet31-1by16-1by8_6e_st_mj.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
- SynthText
|
||||
|
@ -51,9 +51,9 @@ Models:
|
|||
word_acc: 87.15
|
||||
Weights: https://download.openmmlab.com/mmocr/textrecog/nrtr/nrtr_r31_1by16_1by8_academic_20211124-f60cebf4.pth
|
||||
|
||||
- Name: nrtr_r31_1by8_1by4_academic
|
||||
- Name: nrtr_resnet31-1by8-1by4_6e_st_mj
|
||||
In Collection: NRTR
|
||||
Config: configs/textrecog/nrtr/nrtr_r31_1by8_1by4_academic.py
|
||||
Config: configs/textrecog/nrtr/nrtr_resnet31-1by8-1by4_6e_st_mj.py
|
||||
Metadata:
|
||||
Training Data:
|
||||
- SynthText
|
||||
|
|
|
@ -0,0 +1,45 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/mjsynth.py',
|
||||
'../../_base_/recog_datasets/synthtext.py',
|
||||
'../../_base_/recog_datasets/cute80.py',
|
||||
'../../_base_/recog_datasets/iiit5k.py',
|
||||
'../../_base_/recog_datasets/svt.py',
|
||||
'../../_base_/recog_datasets/svtp.py',
|
||||
'../../_base_/recog_datasets/icdar2013.py',
|
||||
'../../_base_/recog_datasets/icdar2015.py',
|
||||
'../../_base_/textrec_default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py',
|
||||
'_base_nrtr_modality-transform.py',
|
||||
]
|
||||
|
||||
# optimizer settings
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
# dataset settings
|
||||
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
|
||||
test_list = [
|
||||
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
|
||||
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
|
||||
]
|
||||
|
||||
train_dataset = dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
|
||||
test_dataset = dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=384,
|
||||
num_workers=32,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
|
||||
test_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
|
||||
val_dataloader = test_dataloader
|
|
@ -0,0 +1,41 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/toy_data.py',
|
||||
'../../_base_/textrec_default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py',
|
||||
'_base_nrtr_modality-transform.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
|
||||
train_dataset = dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
|
||||
test_dataset = dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
dict(
|
||||
type='WordMetric', mode=['exact', 'ignore_case',
|
||||
'ignore_case_symbol']),
|
||||
dict(type='CharMetric')
|
||||
]
|
||||
|
||||
test_evaluator = val_evaluator
|
|
@ -1,24 +0,0 @@
|
|||
dictionary = dict(
|
||||
type='Dictionary',
|
||||
dict_file='dicts/english_digits_symbols.txt',
|
||||
with_padding=True,
|
||||
with_unknown=True,
|
||||
same_start_end=True,
|
||||
with_start=True,
|
||||
with_end=True)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
backbone=dict(type='NRTRModalityTransform'),
|
||||
encoder=dict(type='NRTREncoder', n_layers=12),
|
||||
decoder=dict(
|
||||
type='NRTRDecoder',
|
||||
module_loss=dict(
|
||||
type='CEModuleLoss', ignore_first_char=True, flatten=True),
|
||||
postprocessor=dict(type='AttentionPostprocessor'),
|
||||
dictionary=dictionary,
|
||||
max_seq_len=30),
|
||||
data_preprocessor=dict(
|
||||
type='TextRecogDataPreprocessor',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375]))
|
|
@ -1,93 +0,0 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/mjsynth.py',
|
||||
'../../_base_/recog_datasets/synthtext.py',
|
||||
'../../_base_/recog_datasets/cute80.py',
|
||||
'../../_base_/recog_datasets/iiit5k.py',
|
||||
'../../_base_/recog_datasets/svt.py',
|
||||
'../../_base_/recog_datasets/svtp.py',
|
||||
'../../_base_/recog_datasets/icdar2013.py',
|
||||
'../../_base_/recog_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py',
|
||||
'nrtr_modality_transform.py',
|
||||
]
|
||||
|
||||
# optimizer settings
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
# dataset settings
|
||||
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
|
||||
test_list = [
|
||||
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
|
||||
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
|
||||
]
|
||||
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
train_pipeline = [
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
ignore_empty=True,
|
||||
min_size=5),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=4),
|
||||
dict(type='PadToWidth', width=160),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=16),
|
||||
dict(type='PadToWidth', width=160),
|
||||
# add loading annotation after ``Resize`` because ground truth
|
||||
# does not need to do resize data transform
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=384,
|
||||
num_workers=32,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
test_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
val_dataloader = test_dataloader
|
||||
|
||||
val_evaluator = dict(
|
||||
type='MultiDatasetsEvaluator',
|
||||
metrics=[
|
||||
dict(
|
||||
type='WordMetric',
|
||||
mode=['exact', 'ignore_case', 'ignore_case_symbol']),
|
||||
dict(type='CharMetric')
|
||||
],
|
||||
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')
|
|
@ -1,73 +0,0 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/toy_data.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py',
|
||||
'nrtr_modality_transform.py',
|
||||
]
|
||||
|
||||
# dataset settings
|
||||
train_list = {{_base_.train_list}}
|
||||
test_list = {{_base_.test_list}}
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
train_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=4),
|
||||
dict(type='PadToWidth', width=160),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=16),
|
||||
dict(type='PadToWidth', width=160),
|
||||
# add loading annotation after ``Resize`` because ground truth
|
||||
# does not need to do resize data transform
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=8,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
val_evaluator = [
|
||||
dict(
|
||||
type='WordMetric', mode=['exact', 'ignore_case',
|
||||
'ignore_case_symbol']),
|
||||
dict(type='CharMetric')
|
||||
]
|
||||
|
||||
test_evaluator = val_evaluator
|
||||
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')
|
|
@ -1,30 +0,0 @@
|
|||
dictionary = dict(
|
||||
type='Dictionary',
|
||||
dict_file='dicts/english_digits_symbols.txt',
|
||||
with_padding=True,
|
||||
with_unknown=True,
|
||||
same_start_end=True,
|
||||
with_start=True,
|
||||
with_end=True)
|
||||
|
||||
model = dict(
|
||||
type='NRTR',
|
||||
backbone=dict(
|
||||
type='ResNet31OCR',
|
||||
layers=[1, 2, 5, 3],
|
||||
channels=[32, 64, 128, 256, 512, 512],
|
||||
stage4_pool_cfg=dict(kernel_size=(2, 1), stride=(2, 1)),
|
||||
last_stage_pool=True),
|
||||
encoder=dict(type='NRTREncoder'),
|
||||
decoder=dict(
|
||||
type='NRTRDecoder',
|
||||
module_loss=dict(
|
||||
type='CEModuleLoss', ignore_first_char=True, flatten=True),
|
||||
postprocessor=dict(type='AttentionPostprocessor'),
|
||||
dictionary=dictionary,
|
||||
max_seq_len=30,
|
||||
),
|
||||
data_preprocessor=dict(
|
||||
type='TextRecogDataPreprocessor',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375]))
|
|
@ -1,93 +0,0 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/mjsynth.py',
|
||||
'../../_base_/recog_datasets/synthtext.py',
|
||||
'../../_base_/recog_datasets/cute80.py',
|
||||
'../../_base_/recog_datasets/iiit5k.py',
|
||||
'../../_base_/recog_datasets/svt.py',
|
||||
'../../_base_/recog_datasets/svtp.py',
|
||||
'../../_base_/recog_datasets/icdar2013.py',
|
||||
'../../_base_/recog_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py',
|
||||
'nrtr_r31.py',
|
||||
]
|
||||
|
||||
# optimizer settings
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
# dataset settings
|
||||
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
|
||||
test_list = [
|
||||
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
|
||||
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
|
||||
]
|
||||
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50))
|
||||
|
||||
train_pipeline = [
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
ignore_empty=True,
|
||||
min_size=5),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=4),
|
||||
dict(type='PadToWidth', width=160),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=16),
|
||||
dict(type='PadToWidth', width=160),
|
||||
# add loading annotation after ``Resize`` because ground truth
|
||||
# does not need to do resize data transform
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=384,
|
||||
num_workers=24,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
test_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
val_dataloader = test_dataloader
|
||||
|
||||
val_evaluator = dict(
|
||||
type='MultiDatasetsEvaluator',
|
||||
metrics=[
|
||||
dict(
|
||||
type='WordMetric',
|
||||
mode=['exact', 'ignore_case', 'ignore_case_symbol']),
|
||||
dict(type='CharMetric')
|
||||
],
|
||||
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')
|
|
@ -1,95 +0,0 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/mjsynth.py',
|
||||
'../../_base_/recog_datasets/synthtext.py',
|
||||
'../../_base_/recog_datasets/cute80.py',
|
||||
'../../_base_/recog_datasets/iiit5k.py',
|
||||
'../../_base_/recog_datasets/svt.py',
|
||||
'../../_base_/recog_datasets/svtp.py',
|
||||
'../../_base_/recog_datasets/icdar2013.py',
|
||||
'../../_base_/recog_datasets/icdar2015.py',
|
||||
'../../_base_/default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py',
|
||||
'nrtr_r31.py',
|
||||
]
|
||||
|
||||
# optimizer settings
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
# dataset settings
|
||||
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
|
||||
test_list = [
|
||||
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
|
||||
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
|
||||
]
|
||||
|
||||
file_client_args = dict(backend='disk')
|
||||
default_hooks = dict(logger=dict(type='LoggerHook', interval=50), )
|
||||
|
||||
model = dict(backbone=dict(last_stage_pool=False))
|
||||
|
||||
train_pipeline = [
|
||||
dict(
|
||||
type='LoadImageFromFile',
|
||||
file_client_args=file_client_args,
|
||||
ignore_empty=True,
|
||||
min_size=5),
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=4),
|
||||
dict(type='PadToWidth', width=160),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
test_pipeline = [
|
||||
dict(type='LoadImageFromFile', file_client_args=file_client_args),
|
||||
dict(
|
||||
type='RescaleToHeight',
|
||||
height=32,
|
||||
min_width=32,
|
||||
max_width=160,
|
||||
width_divisor=16),
|
||||
dict(type='PadToWidth', width=160),
|
||||
# add loading annotation after ``Resize`` because ground truth
|
||||
# does not need to do resize data transform
|
||||
dict(type='LoadOCRAnnotations', with_text=True),
|
||||
dict(
|
||||
type='PackTextRecogInputs',
|
||||
meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio'))
|
||||
]
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=384,
|
||||
num_workers=32,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=train_pipeline))
|
||||
|
||||
test_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=test_pipeline))
|
||||
val_dataloader = test_dataloader
|
||||
|
||||
val_evaluator = dict(
|
||||
type='MultiDatasetsEvaluator',
|
||||
metrics=[
|
||||
dict(
|
||||
type='WordMetric',
|
||||
mode=['exact', 'ignore_case', 'ignore_case_symbol']),
|
||||
dict(type='CharMetric')
|
||||
],
|
||||
dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
|
||||
test_evaluator = val_evaluator
|
||||
|
||||
visualizer = dict(type='TextRecogLocalVisualizer', name='visualizer')
|
|
@ -0,0 +1,45 @@
|
|||
_base_ = [
|
||||
'../../_base_/recog_datasets/mjsynth.py',
|
||||
'../../_base_/recog_datasets/synthtext.py',
|
||||
'../../_base_/recog_datasets/cute80.py',
|
||||
'../../_base_/recog_datasets/iiit5k.py',
|
||||
'../../_base_/recog_datasets/svt.py',
|
||||
'../../_base_/recog_datasets/svtp.py',
|
||||
'../../_base_/recog_datasets/icdar2013.py',
|
||||
'../../_base_/recog_datasets/icdar2015.py',
|
||||
'../../_base_/textrec_default_runtime.py',
|
||||
'../../_base_/schedules/schedule_adam_step_6e.py',
|
||||
'_base_nrtr_resnet31.py',
|
||||
]
|
||||
|
||||
# optimizer settings
|
||||
optim_wrapper = dict(type='OptimWrapper', optimizer=dict(type='Adam', lr=3e-4))
|
||||
|
||||
# dataset settings
|
||||
train_list = [_base_.mj_rec_train, _base_.st_rec_train]
|
||||
test_list = [
|
||||
_base_.cute80_rec_test, _base_.iiit5k_rec_test, _base_.svt_rec_test,
|
||||
_base_.svtp_rec_test, _base_.ic13_rec_test, _base_.ic15_rec_test
|
||||
]
|
||||
|
||||
train_dataset = dict(
|
||||
type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
|
||||
test_dataset = dict(
|
||||
type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)
|
||||
|
||||
train_dataloader = dict(
|
||||
batch_size=384,
|
||||
num_workers=24,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=train_dataset)
|
||||
|
||||
test_dataloader = dict(
|
||||
batch_size=1,
|
||||
num_workers=4,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False),
|
||||
dataset=test_dataset)
|
||||
|
||||
val_dataloader = test_dataloader
|
|
@ -0,0 +1,5 @@
|
|||
_base_ = [
|
||||
'nrtr_resnet31-1by16-1by8_6e_st_mj.py',
|
||||
]
|
||||
|
||||
model = dict(backbone=dict(last_stage_pool=False))
|
Loading…
Reference in New Issue