[Docs] Add detailed version requirement tables (#778)

pull/495/merge
Tong Gao 2022-02-16 20:42:31 +08:00 committed by GitHub
parent 0f5c7d38f8
commit b91421e8b1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 42 additions and 19 deletions

View File

@ -9,8 +9,19 @@
- CUDA 10.1
- NCCL 2
- GCC 5.4.0 or higher
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation) >= 1.3.8
- [MMDetection](https://mmdetection.readthedocs.io/en/latest/#installation) >= 2.14.0
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)
- [MMDetection](https://mmdetection.readthedocs.io/en/latest/#installation)
MMOCR has different version requirements on MMCV and MMDetection at each release to guarantee the implementation correctness. Please refer to the table below and ensure the package versions fit the requirement.
| MMOCR | MMCV | MMDetection |
| - | - | - |
| master | 1.3.8 <= mmcv <= 1.5.0 | 2.14.0 <= mmdet <= 3.0.0 |
| 0.4.0, 0.4.1 | 1.3.8 <= mmcv <= 1.5.0 | 2.14.0 <= mmdet <= 2.20.0 |
| 0.3.0 | 1.3.8 <= mmcv <= 1.4.0 | 2.14.0 <= mmdet <= 2.20.0 |
| 0.2.1 | 1.3.8 <= mmcv <= 1.4.0 | 2.13.0 <= mmdet <= 2.20.0 |
| 0.2.0 | 1.3.4 <= mmcv <= 1.4.0 | 2.11.0 <= mmdet <= 2.13.0 |
| 0.1.0 | 1.2.6 <= mmcv <= 1.3.4 | 2.9.0 <= mmdet <= 2.11.0 |
We have tested the following versions of OS and software:
@ -44,7 +55,6 @@ Make sure that your compilation CUDA version and runtime CUDA version matches.
You can check the supported CUDA version for precompiled packages on the [PyTorch website](https://pytorch.org/).
:::
c. Install [mmcv](https://github.com/open-mmlab/mmcv), we recommend you to install the pre-build mmcv as below.
```shell
@ -56,18 +66,19 @@ Please replace ``{cu_version}`` and ``{torch_version}`` in the url with your des
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
```
:::{note}
mmcv-full is only compiled on PyTorch 1.x.0 because the compatibility usually holds between 1.x.0 and 1.x.1. If your PyTorch version is 1.x.1, you can install mmcv-full compiled with PyTorch 1.x.0 and it usually works well.
```
# We can ignore the micro version of PyTorch
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html
```
```bash
# We can ignore the micro version of PyTorch
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html
```
:::
:::{note}
Note that mmocr 0.2.1 or later requires mmcv 1.3.8 or later.
If it compiles during installation, then please check that the CUDA version and PyTorch version **exactly** matches the version in the `mmcv-full` installation command. For example, PyTorch 1.7.0 and 1.7.1 are treated differently.
If it compiles during installation, then please check that the CUDA version and PyTorch version **exactly** matches the version in the `mmcv-full` installation command.
See official [installation guide](https://github.com/open-mmlab/mmcv#installation) for different versions of MMCV compatible to different PyTorch and CUDA versions.
:::
@ -85,7 +96,6 @@ pip install mmdet
Optionally you can choose to install `mmdet` following the official [installation guide](https://github.com/open-mmlab/mmdetection/blob/master/docs/get_started.md).
e. Clone the MMOCR repository.
```shell
@ -148,6 +158,7 @@ It is recommended to symlink the dataset root to `mmocr/data`. Please refer to [
If your folder structure is different, you may need to change the corresponding paths in config files.
The `mmocr` folder is organized as follows:
```
├── configs/
├── demo/

View File

@ -9,8 +9,19 @@
- CUDA 10.1
- NCCL 2
- GCC 5.4.0 或更高版本
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation) >= 1.3.8
- [MMDetection](https://mmdetection.readthedocs.io/en/latest/#installation) >= 2.14.0
- [MMCV](https://mmcv.readthedocs.io/en/latest/#installation)
- [MMDetection](https://mmdetection.readthedocs.io/en/latest/#installation)
为了确保代码实现的正确性MMOCR 每个版本都有可能改变对 MMCV 和 MMDetection 版本的依赖。请根据以下表格确保版本之间的相互匹配。
| MMOCR | MMCV | MMDetection |
| - | - | - |
| master | 1.3.8 <= mmcv <= 1.5.0 | 2.14.0 <= mmdet <= 3.0.0 |
| 0.4.0, 0.4.1 | 1.3.8 <= mmcv <= 1.5.0 | 2.14.0 <= mmdet <= 2.20.0 |
| 0.3.0 | 1.3.8 <= mmcv <= 1.4.0 | 2.14.0 <= mmdet <= 2.20.0 |
| 0.2.1 | 1.3.8 <= mmcv <= 1.4.0 | 2.13.0 <= mmdet <= 2.20.0 |
| 0.2.0 | 1.3.4 <= mmcv <= 1.4.0 | 2.11.0 <= mmdet <= 2.13.0 |
| 0.1.0 | 1.2.6 <= mmcv <= 1.3.4 | 2.9.0 <= mmdet <= 2.11.0 |
我们已经测试了以下操作系统和软件版本:
@ -38,11 +49,11 @@ b. 按照 PyTorch 官网教程安装 PyTorch 和 torchvision ([参见官方链
```shell
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 -c pytorch
```
:::{note}
请确定 CUDA 编译版本和运行版本一致。你可以在 [PyTorch](https://pytorch.org/) 官网检查预编译 PyTorch 所支持的 CUDA 版本。
:::
c. 安装 [mmcv](https://github.com/open-mmlab/mmcv),推荐以下方式进行安装。
```shell
@ -54,18 +65,19 @@ pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{
```shell
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
```
:::{note}
PyTorch 在 1.x.0 和 1.x.1 之间通常是兼容的,故 mmcv-full 只提供 1.x.0 的编译包。如果你的 PyTorch 版本是 1.x.1,你可以放心地安装在 1.x.0 版本编译的 mmcv-full。
```
```bash
# 我们可以忽略 PyTorch 的小版本号
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7/index.html
```
:::
:::{note}
使用 mmocr 0.2.0 及更高版本需要安装 mmcv 1.3.4 或更高版本。
如果安装时进行了编译过程,请再次确认安装的 `mmcv-full` 版本与环境中 CUDA 和 PyTorch 的版本匹配。即使是 PyTorch 1.7.0 和 1.7.1`mmcv-full` 的安装版本也是有区别的。
:::
:::{note}
如果安装时进行了编译过程,请再次确认安装的 `mmcv-full` 版本与环境中 CUDA 和 PyTorch 的版本匹配。
如有需要,可以在[此处](https://github.com/open-mmlab/mmcv#installation)检查 mmcv 与 CUDA 和 PyTorch 的版本对应关系。
:::
@ -83,7 +95,6 @@ pip install mmdet
或者,你也可以按照 [安装指南](https://github.com/open-mmlab/mmdetection/blob/master/docs/get_started.md) 中的方法安装 `mmdet`
e. 克隆 MMOCR 项目到本地.
```shell
@ -146,6 +157,7 @@ docker run --gpus all --shm-size=8g -it -v {实际数据目录}:/mmocr/data mmoc
如果你需要的文件夹路径不同,你可能需要在 configs 文件中修改对应的文件路径信息。
`mmocr` 文件夹路径结构如下:
```
├── configs/
├── demo/